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Abstract

We study online classification with general hypothesis classes where the true labels
are determined by some function within the class, but are corrupted by unknown
stochastic noise, and the features are generated adversarially. Predictions are made
using observed noisy labels and noiseless features, while the performance is mea-
sured via minimax risk when comparing against true labels. The noisy mechanism
is modeled via a general noisy kernel that specifies, for any individual data point, a
set of distributions from which the actual noisy label distribution is chosen. We
show that minimax risk is tightly characterized (up to a logarithmic factor of the hy-
pothesis class size) by the Hellinger gap of the noisy label distributions induced by
the kernel, independent of other properties such as the means and variances of the
noise. Our main technique is based on a novel reduction to an online comparison
scheme of two-hypotheses, along with a new conditional version of Le Cam-Birgé
testing suitable for online settings. Our work provides the first comprehensive
characterization for noisy online classification with guarantees that apply to the
ground truth while addressing general noisy observations.

1 Introduction

Learning from noisy data is a fundamental problem in many machine learning applications. Noise
can originate from various sources, including low-precision measurements of physical quantities,
communication errors, or noise intentionally injected by methods such as differential privacy. In such
cases, one typically learns by training on noisy (or observed) data while aiming to build a model that
performs well on the true (or latent) data. This paper focuses on online learning [20] from noisy
labels, where one receives noiseless, adversarially generated features and corresponding noisy labels
sequentially, and predicts the true labels as the data arrive.

Online learning has been primarily studied in the agnostic setting [1, 19, 7], where one receives the
labels in their plain (noise-free) form and the prediction risk is evaluated on the observed labels.
It is typically assumed that both the features and observed labels are generated adversarially, and
prediction quality is measured via the notion of regret, which compares the actual cumulative risk
incurred by the predictor with the minimal cumulative risk incurred by the best expert in a hypothesis
class. While this approach is mathematically appealing, it does not adequately characterize online
learning scenarios when our goal is to achieve good performance with respect to grand truth data that
may be different from the observed (noisy) ones.

This paper considers an online learning scenario that differs from classical agnostic online learning
in two aspects: (i) we assume that the noisy labels are derived from a (semi-) stochastic mechanism
rather than from pure adversarial selections; (ii) our prediction risk is evaluated on the true labels,
not noisy observations. To better motivate the study of such a scenario, we consider the following
example first introduced by Ben-David et al. [1]:
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Example 1. Let H ⊂ {0, 1}X be a finite hypothesis class. Consider the following online learning
game between Nature/Adversary and Learner that is played over a time horizon T . At the start,
Nature fixes a ground truth classifier h ∈ H. At each time step t ≤ T , Nature adversarially selects
feature xt ∈ X and reveals it to the learner. The learner makes a prediction ŷt based on prior features
xt = {x1, · · · ,xt} and noisy labels ỹt−1 = {ỹ1, · · · , ỹt−1}. Nature then selects a (unknown) noise
parameter ηt ∈ [0, η] for some given η (known to learner), and generates 1:

ỹt = Bernoulli(ηt)⊕ yt,

where ⊕ denotes binary addition and yt = h(xt) is the true label. It was shown in [1, Thm 15] that
there exists a predictor ŷT such that:

sup
h∈H,xT∈XT

E

[
T∑

t=1

1{ŷt ̸= h(xt)}

]
≤ log |H|

1− 2
√
η(1− η)

. (1)

Observe that the risk in (1) is independent of the time horizon T , although the error introduced by
noise to true labels can grow linearly as ηT . However, the simple Bernoulli noise cannot model more
sophisticated application scenarios, such as differential privacy or noisy physical measurements.

This paper introduces a novel online learning framework for modeling general noisy mechanisms.
In particular, it encompasses (1) as a very specific instance and provides a clear and comprehensive
characterization of the underlying paradigm. Formally, let Y be the set of true (latent) labels and Ỹ
be the set of noisy (observed) labels, which we assume are finite and of size N,M , respectively. Let
X be the feature space. We model the noisy mechanism by a noisy kernel:

K : X × Y → 2D(Ỹ), (2)

where D(Ỹ) is the set of all distributions over Ỹ . That is, the kernel K maps each pair (x, y) to a
subset Qx

y := K(x, y) ⊂ D(Ỹ) of distributions over Ỹ . Observe that the noisy kernel provides a
compact way of modeling noisy label distributions without explicitly referring to the noise. This is
more convenient for our discussion, as ultimately the statistical information is solely determined by
the noisy label distributions.

For any given H ⊂ YX and kernel K, we consider the following robust (noisy) online classification
scenario: Nature first selects h ∈ H; at each time step t, Nature chooses (adversarially) xt ∈ X and
reveals it to the learner; the learner then makes a prediction ŷt, based on the features xt and noisy
labels ỹt−1; an adversary then selects a distribution p̃t ∈ Qxt

h(xt)
, samples ỹt ∼ p̃t and reveals ỹt to

the learner. Let Φ and Ψ be the strategies of the learner and Nature/adversary, respectively. The goal
of the learner is to minimize the following expected minimax risk:

r̃T (H,K) = inf
Φ

sup
Ψ

E

[
T∑

t=1

1{h(xt) ̸= ŷt}

]
, (3)

where ŷt = Φ(xt, ỹt−1). Note that the adversarial selection of distribution p̃t from the kernel set
Qxt

h(xt)
provides more flexibility for modeling scenarios when the noisy label distribution changes

even with the same true label, such as the Massart’s noise in Example 1. We refer to Section 2 for a
more complete specification of our setting.

1.1 Main Contributions

Our main contributions in this paper establish the fundamental limits of minimax risk in (3) by
providing nearly matching lower and upper bounds across a wide range of hypothesis classes H
and noisy kernels K. Observe that, to allow for non-trivial prediction rules, the induced noisy
label distributions must be statistically distinguishable for distinct true labels. To formalize this
intuition, we define, for any noisy kernel K and feature x ∈ X , the Hellinger gap as γH(x) =

infy ̸=y′∈Y infp∈Qx
y ,q∈Qx

y′{H
2(p, q)}, where H2(p, q) =

∑M
m=1(

√
p[m]−

√
q[m])2 is the squared

Hellinger distance. That is, γH(x) measures the minimal squared Hellinger distance of the induced
noisy label distributions over all distinct true labels.

Our main result (see also Theorem 2) can be summarized as follows:
1This is also known as Massart’s noise in the literature.
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Theorem 1. Let H ⊂ YX be any finite class, and K be any noisy kernel such that infx∈X γH(x) ≥ γH

for some γH > 0, and Qx
y ⊂ D(Ỹ) is closed and convex for all x, y. Then:

r̃T (H,K) ≤ O

(
log2 |H|
γH

)
.

Moreover, for anyK ∈ N and any kernel K with at least logK features x ∈ X for which γH(x) ≤ γH,

there exists a class H of size K that satisfies: r̃T (H,K) ≥ Ω
(

log |H|
γH

)
.

Theorem 1 shows that the Hellinger gap is the right characterization for the minimax risk upto at
most a logarithmic factor. Moreover, the risk bound depends solely on the gap parameter γH and
log |H|, independent of time horizon T , the size of Y and Ỹ , and the properties of noise such as
means and variances. For the bounded Bernoulli noise in Example 1, the set Qx

y corresponds to
Bernoulli distributions with parameters in [0, η] if y = 0 and in [1 − η, 1] if y = 1, leading to the
Hellinger gap γH = 1− 2

√
η(1− η). This matches the dependency on η in Example 1 2. However,

our result holds for any noisy kernel. For instance, if we shift Qx
0 to Bernoulli distribution with

parameter 0 and Qx
1 with parameters in [1− 2η, 1], then γH = 1−

√
2η = Θ(1− 2η). This is tighter

than the dependency on η in Example 1 (for η → 1
2 ), since 1− 2

√
η(1− η) = Θ((1− 2η)2).

Our main proof technique for establishing Theorem 1 is based on a novel (black box) reduction to an
online comparison scheme of two-hypotheses in H, as demonstrated in Theorem 3. This allows us
to reduce the noisy online classification problem to a hypothesis testing problem, which effectively
decouples the adversarial property of the features from the stochastic property of the noisy labels.
However, due to the adversarial selection of the noisy label distributions, the classical hypothesis
testing techniques does not apply. To resolve this issue, we establish in Theorem 4, a generalization
of the Le Cam-Birgé Test with varying conditional marginals for handling pairwise testing via the
Hellinger gap, which is a result of independent interest.

Tight dependency on log |H|. Although the lower and upper bounds in Theorem 1 differ by a
log |H| factor, this is compensated by the fact that we are dealing with the most general classes
and kernels. This can be tightened for various special cases. Indeed, for a class H with binary
true labels and arbitrary noisy labels, we demonstrate in Theorem 5 that the minimax risk is upper
bounded by 16 log |H|

γL
, where γL is the L2-gap that substitutes the Hellinger distance with L2-distance

in Theorem 1. This is proved via a novel reduction to online conditional distribution estimation under
L2-distance. Moreover, we demonstrate in Appendix G (Theorem 6) that the (optimal) O( log |H|

γH
)

upper bound holds if |Qx
y | = 1 for all x, y, i.e., the noisy label distribution is determined by data.

1.2 Related Work

Online learning with noisy data was discussed in [6], which specifically considers generalized
linear functions with zero-mean and bounded variance noises. Our work differs in that we focus
on classification instead of regression. Moreover, our noisy model does not require that the noise
be zero-mean. To the best of our knowledge, [1] is the only work that has specifically considered
the classification task, but this was limited to bounded Bernoulli noise. From a technical standpoint,
analogous ideas of pairwise comparison have been considered in differential privacy literature, such
as in [11], but only in batch settings. The reduction to online conditional probability estimation
was also explored in [10] within the context of online decision making. However, a distinguishing
feature of our work is that our conditional probability estimation problem is necessarily misspecified,
as our noisy label distributions are selected adversarially and are unknown a priori to the learner.
Our problem setup is further related to differentially private conditional distribution learning, as in
[24], and robust hypothesis testing, discussed in [17, Chapter 16]. Online conditional probability
estimation has been widely studied, see [18, 3, 2, 4, 23, 22]. Conditional density estimation in the
batch setting has also been extensively studied, see [12] for KL-divergence with misspecification
and [9] for L2 loss. Learning from noisy labels in the batch case was discussed in [16] (see also the
references therein) by leveraging suitably defined proxy losses. There has been a long line of research
on online prediction with adversarial observable labels in the agnostic formulation, see [5, 1, 19, 7].

2To the best of our knowledge, this Hellinger interpretation is not known in literature; the proof in [1] is
based on induction without explaining on how the factor 1− 2

√
η(1− η) is obtained.
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2 Notation and Preliminaries

Let X be a set of features (or instances), Y be a set of labels, and Ỹ be a set of noisy observations. We
assume throughout the paper that |Y| = N and |Ỹ| =M for some integers N,M ≥ 2. We denote
D(Ỹ) as the set of all probability distributions over Ỹ .

Let H ⊂ YX be a hypotheses class and K be a noisy kernel in (2). We consider the following
robust online classification scenario: (1) Nature first selects some h ∈ H; (2) At time t, Nature
adversarially selects xt ∈ X ; (3) Learner predicts ŷt ∈ Y , based on (noisy) history observed thus far
(i.e., xt, ỹt−1); (4) An adversary then selects p̃t ∈ Qxt

h(xt)
, and generates a noisy sample ỹt ∼ p̃t.

The goal of the learner is to minimize the cumulative error:
∑T

t=1 1{h(xt) ̸= ŷt}.

Note that the cumulative error is a random variable that depends on all the randomness associated
with the game. To remove the dependency on such randomness and to assess the fundamental limits
of the prediction quality, we consider the following two measures 3:

Definition 1. Let H ⊂ YX be a set of hypotheses and K : X × Y → 2D(Ỹ) be a noisy kernel. We
denote by Φ the (possibly randomized) strategies of the learner. The expected minimax risk is:

r̃T (H,K) = inf
Φ

sup
h∈H,xT∈XT

QT
KEŷT

[
T∑

t=1

1{h(xt) ̸= ŷt}

]
, (4)

where QT
K ≡ sup

p̃1∈Qx1
h(x1)

Eỹ1∼p̃1
· · · sup

p̃T∈QxT
h(xT )

EỹT∼p̃T
, and ŷt ∼ Φ(xt, ỹt−1).

By skolemization [19], the operator QT
K is equivalent to supp̃ EỹT∼p̃, where p̃ runs over all (joint)

distributions over ỸT such that ∀t ∈ [T ],∀ỹt−1 ∈ Ỹt−1 the conditional marginal p̃ỹt|ỹt−1 ∈ Qxt

h(xt)
.

Definition 2. Let H, K, and Φ be as in Definition 1. For any δ > 0, the high probability minimax
risk at confidence δ is the minimum quantity Bδ(H,K) ≥ 0 such that there exists a predictor Φ
satisfying:

sup
h∈H,xT∈XT ,p̃

PrỹT∼p̃,ŷT

[
T∑

t=1

1{h(xt) ̸= ŷt} ≥ Bδ(H,K)

]
≤ δ, (5)

where p̃ is selected as in the discussion above and ŷt ∼ Φ(xt, ỹt−1).

Note that the kernel map K is generally known to the learner when constructing the predictor Φ.
However, the induced kernel sets Qxt

h(xt)
are not, since they depend on the unknown ground truth

classifier h and adversarially generated features xT . In certain cases, such as Theorem 3 and
Example 4, the kernel map K is also not required to be known.

For any x ∈ X and y ∈ Y , we denote by Qx
y the set induced by a kernel. We can assume, w.l.o.g.,

that the Qx
y s are convex and closed sets, since the adversary can select an arbitrary distribution from

Qx
y s at each time step, including randomized strategies that effectively sample from a mixture (i.e.,

convex combination) of distributions in Qx
y s.

One must introduce some constraints on the kernel K in order to obtain meaningful results. To do so,
we introduce the following well-separation condition:

Definition 3. LetL : D(Ỹ)2 → R≥0 be any divergence, we say a kernel K is well-separated w.r.t. L at

scale γ > 0, if ∀x ∈ X , ∀y, y′ ∈ Y with y ̸= y′ we have L(Qx
y ,Qx

y′)
def
= infp∈Qx

y ,q∈Qx
y′ L(p, q) ≥ γ.

Example 2. For any y ∈ Y , we specify a canonical distribution py ∈ D(Ỹ). A natural noisy kernel
would be to define Qx

y = {p ∈ D(Ỹ) : TV(p, py) ≤ ϵ}, where TV denotes total variation. In this
case, the kernel is well-separated with the gap γ under total variation if miny ̸=y′∈Y TV(py, py′) ≥
γ + 2ϵ. In particular, this subsumes Example 1 if, for y ∈ {0, 1}, we define py as the distribution that
assigns probability 1 to y, and take ϵ = η, where the TV-gap equals γ = 1− 2η.

3We assume here the selection of p̃T and xT are oblivious to the learner’s action for simplicity. This is
equivalent to the adaptive case if the learner’s internal randomness are independent among different time steps
by a standard argument from [5, Lemma 4.1], see also Appendix H.
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3 Main Results

We begin by stating our main result of this paper.

Theorem 2. Let H ⊂ YX be a finite class of size K, and K be a kernel that is well-separated at
scale γH w.r.t. squared Hellinger divergence (Definition 3). Then, the high probability minimax risk
(Definition 2) with confidence δ > 0 is upper bounded by:

Bδ(H,K) ≤ 8 log(4K/δ) logK

γH

+ log(2/δ). (6)

Moreover, for any kernel K such that there exist at least L distinct features x ∈ X 4 for which
infy ̸=y′∈Y H

2(Qx
y ,Qx

y′) ≤ γH, one can find a class H of size K such that:

r̃T (H,K) ≥ Ω

(
min{L, logK}

γH

)
.

Observe that, the upper bound holds with high probability and the risk is independent of the time
horizon (i.e., the so-called fast rates known in the PAC-learning literature). Moreover, the bound is in-
dependent of the size of Y and Ỹ . A simple integration argument yields the expected risk upper bound
r̃(H,K) ≤ O

(
log2 K
γH

)
, which matches the lower bound upto only a logK factor. This demonstrates

that, the Hellinger gap of the induced noisy label distributions is the right characterization for the
minimax risk. Moreover, the Hellinger distance can be transformed from other f -divergences (such
total variation) without depending on the size of Ỹ [17, Chapter 7.6].

Example 3. Let K be the kernel in Example 2. Let λ = miny ̸=y′∈Y TV(py, py′). Hence, the kernel
is well-separated with TV-gap λ − 2ϵ. Since H2(p, q) ≥ TV(p, q)2 [17, Eq. 7.22], the Hellinger
gap is lower bounded by (λ− 2ϵ)2. Invoking Theorem 2, we have for any hypothesis class H, the

following risk upper bound holds: Bδ(H,K) ≤ O
(

log |H| log(|H|/δ)
(λ−2ϵ)2

)
.

The rest of this section is devoted to establishing Theorem 2. Our main proof technique is based on a
novel reduction to pairwise testing of two hypotheses as developed in Section 3.1, along with explicit
testing rules in Section 3.2 based on a novel conditional version of Le Cam-Birgé testing.

3.1 Reduction to Pairwise Comparison: a Generic Approach

We first introduce the following key technical concept. Recall that our robust online classification
problem is completely determined by the tuple (H,K).

Definition 4. A problem (H,K) is said to be pairwise testable with confidence δ > 0 and error
bound C(δ) ≥ 0 if, for any pair hi, hj ∈ H, the sub-problem ({hi, hj},K) admits a predictor (i.e.,
pairwise tester) Φi,j that achieves cumulative risk ≤ C(δ) w.p. ≥ 1− δ (see Definition 2).

Clearly, any prediction rule for (H,K) serves as a pairwise testing rule for all the sub-problems
({hi, hj},K) with hi, hj ∈ H. Perhaps surprisingly, we will show in this section that any pairwise
testing rules for the sub-problems can also be converted into a prediction rule for (H,K), incurring
only an additional logarithmic factor on the risk bounds.

To this end, suppose that the tuple (H,K) is pairwise testable and the class H = {h1, · · · , hK} is
finite with size K. Let Φi,j be the testing rule (will be constructed in Section 3.2) for hi, hj with error
bound C(δ) and confidence δ > 0. Let xT , ỹT be any realization of problem (H,K). We define, for
any hi ∈ H and t ∈ [T ], a surrogate loss vector:

∀j ∈ [K], vi
t[j] = 1{Φi,j(x

t, ỹt−1) ̸= hi(xt)}. (7)

That is, the loss vi
t[j] = 1 if and only if the test Φi,j(x

t, ỹt−1) differs from hi(xt). Given access to
testers Φi,js, our prediction rule for (H,K) is then presented in Algorithm 1.

4This is a very mild assumption. For instance, if the kernel is independent of the features (such as Example 1),
we have L = |X |. The lower bound gives Ω( logK

γH
) as long as |X | ≥ logK.
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Algorithm 1: Predictor via Pairwise Hypothesis Testing
Input: Class H = {h1, · · · , hK}, pairwise testers Φi,j for i, j ∈ [K] and error bound C
Set S1 = {1, · · · ,K};
for t = 1, · · · , T do

Receive xt;
Sampling index k̂t from St uniformly and make prediction: ŷt = hk̂t

(xt);
Receive noisy label ỹt;
Set St+1 = ∅;
for i ∈ St do

Compute lit = maxj∈[K]

∑t
r=1 v

i
r[j], where vi

t[j] is defined in (7);
if lit ≤ C then

Update St+1 = St+1 ∪ {i};

Theorem 3. Let H ⊂ YX be any hypothesis class of size K and K be any noisy kernel. If (H,K)
is pairwise testable with error bound C(δ) as in Definition 4, then for any δ > 0, the predictor in
Algorithm 1 with C = C(δ/(2K)) achieves the high probability minimax risk (Definition 2):

Bδ(H,K) ≤ 2(1 + 2C(δ/(2K)) logK) + log(2/δ). (8)

Sketch of Proof. At a high level, our goal is to identify the ground truth classifier hk∗ using the
testing results of Φi,js. Note that pairwise testability implies, w.p. ≥ 1 − δ, the errors made by
tester Φk,k∗ on hk∗ is upper bounded by C(δ/2K) for all k ∈ [K] simultaneously. However, for any
other pair i, j ̸= k∗, the tester Φi,j does not provide any guarantees, since the samples used to test
hi, hj originate from hk∗ and is not realizable for Φi,j . The key technical challenge is to extract the
testing results for Φk,k∗ from the other irrelevant tests (i.e., Φi,j with k∗ ̸∈ {i, j}), even when the
k∗ is unknown. This is resolved by our definition of lit in Algorithm 1, which computes for each i
the maximum testing loss over all of its competitors. This ensures that, for the ground truth k∗, the
loss lk

∗

t ≤ C(δ/2K). While for any other i ̸= k∗, we have lit ≥
∑t

r=1 v
i
r[k

∗] ≥
∑t

r=1 1{hi(xr) ̸=
hk∗(xr)} − C(δ/2K). Therefore, any hypothesis hi for which lit > C(δ/2K) cannot be the ground
truth. Algorithm 1 then maintains an index set St that eliminates all hi for which lit > C(δ/2K),
and makes prediction ŷt = hk̂t

(xt) with k̂t sampling uniformly from St.

To derive the risk bound, we use a potential-based analysis that relates the size of Sts with the
prediction error 1{hk∗(xt) ̸= ŷt}. The intuition behind the analysis is that if E[1{hk∗(xt) ̸= ŷt}]
is large, then there will be many elements i ∈ St for which hi(xt) ̸= hk∗(xt), and thus the loss lit
will (potentially) increase. Since Algorithm 1 constructs St+1 by eliminating all i ∈ St for which
lit > C(δ/2K), one can therefore bound the prediction error by the change in the size of Sts. The
key technical challenge here is to control the hypotheses that differ from k∗ but for which the tester
Φk,k∗ errs, which is resolved by carefully defining a potential function. The claimed upper bound
then follows by a similar argument as [14, Thm 2]. See Appendix B for complete proof.

Note that, the reduction of Theorem 3 is general and does not rely on specific properties of the
kernel K (such as the well-separation condition). It provides a black box reduction that converts any
pairwise testing rule for two-hypotheses to a general online classification rule that introduces only a
logarithmic factor on the risk bounds. This effectively decouples the adversarial property of features
from the stochastic property of the noisy labels.

To understand how Theorem 3 operates, we consider the following example:
Example 4. Let H ⊂ {0, 1}X , and K be the bounded Bernoulli noise kernel with parameter η in
Example 1. For any hi, hj ∈ H, we construct the following testing rule. We may assume, w.l.o.g.,
that hi(x) ̸= hj(x) for all x ∈ X , since any x for which hi(x) = hj(x) do not affect our testing.
Moreover, by relabeling, we can assume that hi(x) = 0 and hj(x) = 1 for all x ∈ X . At time step t,
after observing the noisy labels ỹt−1, we compute µ̂t =

1
t−1

∑t−1
r=1 ỹr. If µ̂t ≥ 1

2 , the tester predicts
ŷt = 1; else, it predicts ŷt = 0. By Azuma’s inequality, the probability of making an error at step t is
upper bounded by e−(1−2η)2(t−1)/2. Thus, for any n ≤ T , the probability of making any errors after
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step n is upper bounded by
∑∞

t=n e
−(1−2η)2(t−1)/2 ≤ e−(1−2η)2n/2

(1−2η)2 . Taking n = 2 log(1/δ(1−2η)2)
(1−2η)2

one can upper bound the probability by δ. Therefore, the tuple (H,K) is pairwise testable with
C(δ) ≤ 2 log(1/δ(1−2η)2)

(1−2η)2 . Invoking Theorem 3, we have:

Bδ(H,K) ≤ O

(
log |H| log(|H|/δ(1− 2η)2)

(1− 2η)2

)
. (9)

Note that the risk bound (9) recovers the risk in Example 1 upto a logarithmic factor, but it uses
a completely different approach (c.f. [1]). Moreover, Example 4 offers the following key benefits:
(i) the risk holds with high probability and at the fast rate, which is known to be non-trivial for
cumulative errors (see, e.g., [21]); (ii) the prediction algorithm does not require knowledge of η 5,
which is necessary for the EWA-based algorithms such as those developed in [1].

3.2 Proof of Theorem 2: the conditional Le Cam-Birgé Testing

As demonstrated in Section 3.1, the risk of noisy online classification can be reduced to the pairwise
testing of two hypotheses. However, we still need to construct the explicit pairwise testing rules. This
section is devoted to providing a generic testing rule for general kernels.

Let h0 and h1 be any two hypotheses. We may assume, w.l.o.g., that h0(x) ̸= h1(x) for all x ∈ X ,
since the features for which h0 and h1 agree do not affect the testing. We now provide a more
compact characterization of the kernel without explicitly referring to true labels. Let xT be any
realization of features. For any i ∈ {0, 1}, t ∈ [T ], and kernel K, we write Qxt

i := K(xt, hi(xt)).

We define QJ
0 and QJ

1 as the sets of all (joint) distributions over ỸJ induced by the kernel upto time
step J for h0, h1, respectively. Equivalently, for i ∈ {0, 1}, we have p ∈ QJ

i if and only if for all
t ∈ [J ] and ỹt−1 ∈ Ỹt−1, the conditional marginal pỹt|ỹt−1 ∈ Qxt

i .

The pairwise testing of h0, h1 at time step J + 1 is then equivalent to the (robust) hypothesis testing
w.r.t. sets QJ

0 and QJ
1 . This is typically resolved using Le Cam-Birgé testing [17, Chapter 32.2] if the

distributions are of product form. However, this does not hold for our purpose, since the distributions
in QJ

i can have highly correlated marginals. Our main result for addressing this issue is a conditional
version of Le Cam-Birgé testing, as stated in Theorem 4 below. To the best of our knowledge, this
conditional version is novel.
Theorem 4 (conditional Le Cam-Birgé Testing). Let QJ

0 and QJ
1 be the classes induced by a kernel

upto time J as defined above. For any t ≤ J , we denote γt = H2(Qxt
0 ,Q

xt
1 ) and assume that Qxt

i is
convex for all i ∈ {0, 1}. Then, there exists a testing rule ψ : ỸJ → {0, 1} such that

sup
p∈QJ

0 ,q∈QJ
1

{
PrỹJ∼p[ψ(ỹ

J) ̸= 0] + PrỹJ∼q[ψ(ỹ
J) ̸= 1]

}
≤ 2

J∏
t=1

(1− γt/2) ≤ 2e−
1
2

∑J
t=1 γt .

Sketch of Proof. The proof requires a suitable application of the minimax theorem by expressing
the testing error as a linear function and arguing that the QJ

i s are convex. The error bound is then
controlled by a careful application of the chain-rule of Rényi divergence. See Appendix C.

Theorem 4 immediately implies the following cumulative risk bound:
Proposition 1. Let h0, h1 be any hypotheses, xT be any realization of features and QT

i , Qxt
i be

defined as above with γt = H2(Qxt
0 ,Q

xt
1 ). Then, there exists a tester ŷT such that for all δ > 0,

i ∈ {0, 1} and p̃ ∈ QT
i , w.p. ≥ 1− δ over ỹT ∼ p̃, we have:

T∑
t=1

1{hi(xt) ̸= ŷt} ≤ argmin
n

{
n ∈ N :

n∑
t=1

γt ≥ 2 log(2/δ)

}
.

Proof. Let n∗ be the minimal number satisfying the RHS. If t ≤ n∗ (this can be checked at each time
step t using only xt and K), we predict arbitrarily. If t ≥ n∗ + 1, we use the tester ψ in Theorem 4

5This fact, however, is not satisfied for the general testing rules developed in Section 3.2, as the construction
depends on knowledge of K.
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with J = n∗ to produce an index î ∈ {0, 1} and make the prediction hî(xt) for all following time
steps. That is, we only use the tester at step n∗ + 1 and reuse the same testing result for all following
time steps. By Theorem 4, the probability of making errors after step n∗ + 1 is upper bounded by δ.
Therefore, the cumulative risk is upper bounded by n∗ with probability ≥ 1− δ.

Proof of Theorem 2. Let h0, h1 ∈ H be any two-hypotheses. For any time step t such that h0(xt) ̸=
h1(xt), we have, by the well-separation condition, that the gap γt ≥ γH in Proposition 1. Consider
the following testing rule: for any time step t such that h1(xt) = h2(xt), we predict the agreed
label; else, we predict the same way as in Proposition 1. Clearly, we only make errors for the second
case. Invoking Proposition 1 with γt = γH for all t ∈ [T ], we have n∗ ≤ 2 log(2/δ)

γH
. Therefore, the

tuple (H,K) is pairwise testable with C(δ) = 2 log(2/δ)
γH

. The upper bound on classification risk then
follows by Theorem 3. The lower bound follows by Le Cam’s two point method and constructing a
hard hypothesis class using an epoch approach. We refer to Appendix D for the complete details.

Remark 1. Note that, our techniques can be easily extended to infinite classes via the covering
techniques from [1, 21]. Moreover, using Proposition 1, our results can also be extended to scenarios
where the gap parameters γt are not uniformly bounded, such as the Tsybakov-type noises [8], which
would result in risk bounds scaling sublinearly w.r.t. T (unlike the constant risk in Theorem 2).

4 Tighter Bounds for Binary Labels via L2 Gap

We have demonstrated in Theorem 2 that the minimax risk is tightly characterized by the Hellinger
gap induced by the kernel. However, the dependency on log |H| remains sub-optimal. We show in
this section a tight dependency on log |H| for classes with binary true labels via the L2 gap.

Theorem 5. Let H ⊂ {0, 1}X be any finite binary valued class, K be any noisy kernel that is
well-separated at scale γL w.r.t. the L2-distance 6 (Definition 3). Then, the expected minimax risk, as
in Definition 1, is upper bounded by: r̃T (H,K) ≤ 16 log |H|

γL
.

We begin with the following simple geometry fact that is crucial to our proof.

Lemma 1. Let Q ⊂ D(Ỹ) be a convex and closed set, p be a point outside of Q with γ
def
=

infq∈Q L
2(p, q). Denote by q∗ ∈ Q the (unique) point that attains L2(p, q∗) = γ. Then for any

q ∈ Q, we have L2(q, p)− L2(q, q∗) ≥ L2(p, q∗) = γ.

Proof. By the hyperplane separation theorem, the hyperplane perpendicular to line segment p− q∗

at q∗ separates Q and p. Therefore, the degree θ of angle formed by p− q∗ − q is greater than π/2.
By the law of cosines, L2(q, p) ≥ L2(q, q∗) + L2(q∗, p) = L2(q, q∗) + γ.

Our key idea of proving Theorem 5 is to reduce the robust (noisy) online classification problem to a
suitable conditional distribution estimation problem, as discussed next.

Online conditional distribution estimation. Let F ⊂ D(Ỹ)X be a class of functions mapping
X to distributions in D(Ỹ). Online conditional distribution estimation is a game between Nature
and an estimator that follows the following protocol: (1) at each times step t, Nature selects some
xt ∈ X and reveals it to the estimator; (2) the estimator then makes an estimation p̂t ∈ D(Ỹ), based
on xt, ỹt−1; (3) Nature then selects some p̃t ∈ D(Ỹ), samples ỹt ∼ p̃t and reveals ỹt to the estimator.
The goal is to find a (deterministic) estimator Φ that minimizes the regret:

RegT (F ,Φ) = sup
f∈F,xT∈XT

QT

[
T∑

t=1

L(p̃t, p̂t)− L(p̃t, f(xt))

]
, (10)

where p̂t = Φ(xt, ỹt−1), QT is the operator specified in Definition 1 by setting Qx
y := D(Ỹ) for all

x, y, and L is any divergence. We emphasize that the distributions p̃T are not necessarily realizable

6Recall that L2(p, q) = ||p− q||22
def
=

∑M
m=1(p[m]− q[m])2.
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by f and are selected completely arbitrarily. This contrasts with the well-specified cases employed
in [10, 4], and is the key that enables us to handle the unknown noisy label distributions.

We now establish the following key technical lemma, see Appendix E for proof.
Lemma 2. Let F ⊂ D(Ỹ)X be a finite distribution-valued function class. Then, for theL2 divergence,
there exists an estimator Φ, i.e., the Exponential Weight Average (EWA) algorithm, such that

RegT (F ,Φ) ≤ 4 log |F|.
Moreover, estimation p̂t is a convex combination of {f(xt) : f ∈ F}.

Proof Sketch of Theorem 5. We provide the high level ideas and refer to Appendix F for complete
details. We define the following distribution-valued function class F using hypothesis class H and
noisy kernel K. For any x ∈ X , we denote by Qx

0 and Qx
1 the sets of noisy label distributions

corresponding to labels 0 and 1, respectively. Since the kernel K is well-separated at scale γL under
L2 divergence, we have, by the hyperplane separation theorem, that there must be qx0 ∈ Qx

0 and
qx1 ∈ Qx

1 such that L2(qx0 , q
x
1 ) = L2(Qx

0 ,Qx
1 ) ≥ γL. We now define for any h ∈ H the function fh

such that ∀x ∈ X , fh(x) = qxh(x). Let F = {fh : h ∈ H} and Φ be the estimator from Lemma 2
with class F and L2 divergence (using xT , ỹT from the original noisy classification game). Our
classification rule is defined as ŷt = argminy{L2(qxt

y , p̂t) : y ∈ {0, 1}}. That is, we predict the
label y so that qxt

y is closer to p̂t under L2 divergence, where p̂t = Φ(xt, ỹt−1).

Let h∗ ∈ H be the underlying true classification function. We have by Lemma 2 that

sup
xT∈XT

QT
K

[
T∑

t=1

L2(p̃t, p̂t)− L2(p̃t, fh∗(xt))

]
≤ 4 log |F| ≤ 4 log |H|, (11)

where QT
K is the operator in Definition 1. Now, our key technical goal is to show that L2(p̃t, p̂t)−

L2(p̃t, fh∗(xt)) ≥ L2(p̂t, fh∗(xt)) ≥ γL

4 1{ŷt ̸= h∗(xt)} via Lemma 1 and a geometric argument,
as illustrated in the figure below:

Qxt

h∗(xt)
Qxt

1−h∗(xt)

p̂t

qxt

1−h∗(xt)fh∗(xt)

p̃t

≥ √
γL/2

The expected minimax risk bound
∑T

t=1 1{ŷt ̸= h∗(xt)} ≤ 16 log |H|
γL

then follows from (11).

Although both our proofs and those provided in [1] are based on the EWA algorithm, the analysis
and resulting algorithms are fundamentally different. For instance, in [1], the learning rate of EWA
depends on the parameter η, while we set it to 1/4 (see Appendix E). More importantly, our proof
applies to any noisy kernel that satisfies the well-separation condition (including cases where |Ỹ| > 2),
which benefits from our geometric interpretation of the kernels. Interestingly, for the specific setting
investigated in [1] (i.e., Example 1), our result yields the same order up to a constant factor, since
1− 2

√
η(1− η) = Θ((1− 2η)2) for η ∈ [0, 12 ). In general, we have 4γL ≤ γH ≤

√
MγL.

5 Discussion

In this paper, we provide nearly matching lower and upper bounds for online classification with
noisy labels via the Hellinger gap of the induced noisy label distributions. Our approach works
for a wide range of hypothesis classes and noisy mechanisms. Our results have a wide range of
applications, such as online learning under (local) differential privacy constraints and online denoising
tasks involving data derived from (noisy) physical measurements (such as learning from quantum
data [15]). The main open problem remaining is to close the logarithmic gap in Theorem 2 for general
kernels. While our work primarily focuses on the information-theoretically achievable minimax risks,
we believe that finding computationally efficient predictors (including oracle-efficient methods as in
[14]) would also be of significant interest.
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A Martingale Concentration Inequalities

In this appendix, we present some standard concentration results for martingales, which will be useful
for deriving high probability guarantees. We refer to [25, Chapter 13.1] for the proofs.

Lemma 3 (Azuma’s Inequality). Let X1, · · · , XT be an arbitrary random process adaptive to some
filtration {Ft}t≤T such that |Xt| ≤ M for all t ≤ T . Let Yt = E[Xt | Ft−1] be the conditional
expected random variable of Xt. Then for all δ > 0, we have

Pr

[
T∑

t=1

Yt <

T∑
t=1

Xt +M
√
(T/2) log(1/δ)

]
≥ 1− δ,

and

Pr

[
T∑

t=1

Yt >

T∑
t=1

Xt −M
√
(T/2) log(1/δ)

]
≥ 1− δ.

The following lemma provides a tighter concentration when Xt ≥ 0, which can be viewed as an
Martingale version of the multiplicative Chernoff bound.

Lemma 4 ([25, Theorem 13.5]). Let X1, · · · , XT be an arbitrary random process adaptive to some
filtration {Ft}t≤T such that 0 ≤ Xt ≤M for all t ≤ T . Let Yt = E[Xt | Ft−1] be the conditional
expected random variable of Xt. Then for all δ > 0 we have

Pr

[
T∑

t=1

Yt < 2

T∑
t=1

Xt + 2M log(1/δ)

]
≥ 1− δ,

and

Pr

[
T∑

t=1

Yt >
1

2

T∑
t=1

Xt − (M/2) log(1/δ)

]
≥ 1− δ.

Proof. Applying [25, Thm 13.5] with ξt = Xt/M and λ = 1 in the theorem.

B Proof of Theorem 3

Let hk∗ ∈ H be the underlying true classification function and xT be the realization of features.
We take C = C(δ/2K) in Algorithm 1. By definition of pairwise testability and union bound, we
have w.p. ≥ 1− δ/2 over the randomness of ỹT and the internal randomness of Φk,k∗s that for all
k ∈ [K],

T∑
t=1

1{hk∗(xt) ̸= Φk,k∗(xt, ỹt−1)} ≤ C(δ/(2K)). (12)

11



Note that for any other {i, j} ̸∋ k∗, equation (12) may not hold for predictor Φi,j . However, our
following argument relies only on the guarantees for predictors Φk,k∗ , which effectively makes our
pairwise testing realizable.

We now condition on the event defined in (12). Let vk
t with k ∈ [K] and t ∈ [T ] be the surrogate

loss vector, as defined in (7). We observe the following key properties

1. We have for all t ∈ [T ] that

max
j∈[K]

t∑
r=1

vk∗

r [j] ≤ C(δ/(2K)); (13)

2. For any k ̸= k∗, we have for all t ∈ [T ]:

max
j∈[K]

t∑
r=1

vk
r [j] ≥

t∑
r=1

1{hk(xr) ̸= hk∗(xt)} − C(δ/(2K)). (14)

The first property is straightforward by the definition of vk
t and (12). The second property holds since

the lower bound is attained when j = k∗.

We now analyze the performance of Algorithm 1. By property (13), we know that k∗ ∈ St for all
t ∈ [T ], i.e., |St| ≥ 1. Let Nt = |St|. We define for all t ∈ [T ] the potential:

Et =
∑
k∈St

max

{
0, 2C(δ/(2K))−

t∑
r=1

1{hk(xr) ̸= hk∗(xr)}

}
.

Clearly, we have Et ≤ 2C(δ/(2K))Nt. Let Dt = |{k ∈ St : hk(xt) ̸= hk∗(xt)}|. We have:

Dt ≤ Nt −Nt+1 + Et − Et+1, (15)

since for any k ∈ St such that hk(xt) ̸= hk∗(xt), either k is removed from St+1 (which contributes
at most Nt − Nt+1) or its contribution to Et+1 is decreased by 1 when compared to Et (this is
because by our construction of Algorithm 1 and property (14) once the contributions of k to Et equals
0 it must be excluded from St+1). We have, by definition of ŷt, that:

E [1{hk∗(xt) ̸= ŷt}] =
Dt

|St|
≤ Nt −Nt+1 + Et − Et+1

Nt
. (16)

By a standard argument [14, Thm 2], we have:

T∑
t=1

Nt −Nt+1

Nt
≤

T∑
t=1

(
1

Nt
+

1

Nt − 1
+ · · ·+ 1

Nt+1 + 1

)

≤
K∑

k=1

1

k
≤ logK.

Moreover, we observe that
T∑

t=1

Et − Et+1

Nt

(a)

≤ 2C(δ/(2K))N1 − E2

N1
+

T∑
t=2

Et − Et+1

Nt

(b)

≤ 2C(δ/(2K))(N1 −N2)

N1

+
2C(δ/(2K))N2 − E3

N2
+

T∑
t=3

Et − Et+1

Nt

(c)

≤ 2C(δ/(2K))

T∑
t=1

Nt −Nt+1

Nt

≤ 2C(δ/(2K)) logK,
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where (a) and (b) follow by Et ≤ 2C(δ/(2K))Nt and Nt ≥ Nt+1; (c) follows by repeating the
same argument for another T − 1 steps.

Therefore, we conclude

E

[
T∑

t=1

1{hk∗(xt) ̸= ŷt}

]
≤ (1 + 2C(δ/(2K))) logK,

where the randomness is on the selection of k̂t ∼ St. Since our selection of k̂t are independent
(conditioning on St) for different t, and the indicator is bounded by 1 and non-negative, we can invoke
Lemma 4 (second part) to obtain a high probability guarantee of confidence δ/2 by introducing an
extra log(2/δ) additive term. The theorem now follows by a union bound with the event (12).

C Proof of Theorem 4

We start with an application of the minimax theorem to hypothesis testing 7.
Lemma 5. Let P0 and P1 be two sets of distributions over a finite domain Ω. If P0 and P1 are
convex under L1 distance (i.e., total variation), then

min
ϕ : Ω→[0,1]

sup
p0∈P0,p1∈P1

{Eω∼p0 [1− ϕ(ω)] + Eω∼p1 [ϕ(ω)]} = 1− inf
p0∈P0,p1∈P1

||p0 − p1||TV.

Moreover, if ϕ∗ is the function attains minimal, then the tester ψ∗(ω) = 1{ϕ∗(ω) < 0.5} achieves
sup

p0∈P0,p1∈P1

{Prω∼p0
[ψ∗(ω) ̸= 0] + Prω∼p1

[ψ∗(ω) ̸= 1]} ≤ 2(1− inf
p0∈P0,p1∈P1

||p0 − p1||TV).

Proof. Observe that the function ϕ can be viewed as a vector in [0, 1]Ω. Moreover, the distribu-
tions over Ω can be viewed as vectors in [0, 1]Ω as well. Therefore, we have Eω∼p0

[1 − ϕ(ω)] +
Eω∼p1

[ϕ(ω)] = ⟨p0, 1− ϕ⟩+ ⟨p1, ϕ⟩, which is a linear function w.r.t. both (p0, p1) and ϕ. Since the
both P0 × P1 and [0, 1]Ω are convex and [0, 1]Ω is compact, we can invoke the minimax theorem [5,
Thm 7.1] to obtain

min
ϕ : Ω→[0,1]

sup
p0∈P0,p1∈P1

{Eω∼p0
[1− ϕ(ω)] + Eω∼p1

[ϕ(ω)]}

= sup
p0∈P0,p1∈P1

min
ϕ : Ω→[0,1]

{Eω∼p0 [1− ϕ(ω)] + Eω∼p1 [ϕ(ω)]}

= sup
p0∈P0,p1∈P1

{1− ||p0 − p1||TV},

where the last equality follows by Le Cam’s two point lemma [17, Theorem 7.7]. Let ϕ∗ be the
function attains minimal and ψ∗(ω) = 1{ϕ∗(ω) < 0.5}. We have 1{ψ∗(ω) ̸= i} ≤ 2(1− i−ϕ∗(ω))
for all i ∈ {0, 1}. To see this, for i = 0, we have ψ∗(ω) ̸= 0 only if ϕ∗(ω) < 0.5, thus 1− ϕ∗(ω) ≥
0.5 (the case for i = 1 follows similarly). Therefore, we have for all p0 ∈ P0, p1 ∈ P1

Prω∼p0
[ψ∗(ω) ̸= 0] + Prω∼p1

[ψ∗(ω) ̸= 1] ≤ 2(Eω∼p0
[1− ϕ∗(ω)] + Eω∼p1

[ϕ∗(ω)]).

This completes the proof.

We now establish the following key property, which demonstrates that the distribution classes
constructed in Theorem 4 satisfy the condition of Lemma 5.
Lemma 6. Let QJ

0 and QJ
1 be the sets in Theorem 4. Then QJ

0 and QJ
1 are convex under L1 distance.

Proof. Let p1, p2 ∈ QJ
i for i ∈ {0, 1} and λ ∈ [0, 1]. We need to show that p = λp1 + (1− λ)p2 ∈

QJ
i as well. For any given t ∈ [T ], we have

p(ỹt | ỹt−1) =
λp1(ỹ

t) + (1− λ)p2(ỹ
t)

λp1(ỹt−1) + (1− λ)p2(ỹt−1)

= λ
p1(ỹ

t−1)

p(ỹt−1)
p1(ỹt | ỹt−1) + (1− λ)

p2(ỹ
t−1)

p(ỹt−1)
p2(ỹt | ỹt−1) ∈ Qxt

i

where the last inclusion follows by convexity of Qxt
i as assumed in Theorem 4. Therefore, we have

p ∈ QJ
i by definition of QJ

i .
7This result was mentioned in [17, Chapter 32.2], without providing a proof.
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Now, our main technical part is to bound the total variation TV(QJ
0 ,QJ

1 ). The primary challenge
comes from controlling the dependencies of conditional marginals of the distributions. To this end,
we introduce the concept of Renyi divergence. Let p1, p2 be two distributions over the same finite
domain Ω, the α-Renyi divergence is defined as

Dα(p1, p2) =
1

α− 1
logEω∼p2

[(
p1(ω)

p2(ω)

)α]
.

If p, q are distributions over domain Ω1 × Ω2 and r is a distribution over Ω1, then the conditional
α-Renyi divergence is defined as

Dα(p, q | r) =
1

α− 1
logEω1∼r

[ ∑
ω2∈Ω2

p(ω2 | ω1)
αq(ω2 | ω1)

1−α

]
.

The following property about Renyi divergence is well known [17, Chapter 7.12]:

Lemma 7. Let p, q be two distributions over Ω1 × Ω2 and p(1) and q(1) be the restrictions of p, q on
Ω1, respectively. Then the following chain rule holds

Dα(p, q) = Dα(p
(1), q(1)) +Dα(p, q | r),

where r(ω1) = p(1)(ω1)
αq(1)(ω1)

1−αe−(α−1)Dα(p(1),q(1)) is a distribution over Ω1.

The following key result bounds the Renyi divergence between QJ
0 and QJ

1 :

Proposition 2. Let QJ
0 and QJ

1 be the sets in Theorem 4. If infp∈Qxt
0 ,q∈Qxt

1
Dα(p, q) ≥ ηt holds for

all t ≤ J . Then

inf
p∈QJ

0 ,q∈QJ
1

Dα(p, q) ≥
J∑

t=1

ηt.

Proof. We prove by induction on J . The base case for J = 1 is trivial, since Q1
0 = Qx1

0 and
Q1

1 = Qx1
1 . We now prove the induction step with J ≥ 2. For any pair p ∈ QJ

0 and q ∈ QJ
1 , we have

by Lemma 7 that Dα(p, q) = Dα(p
(1), q(1)) +Dα(p, q | r), where p(1), q(1) are restrictions of p, q

on ỹJ−1 and r is a distribution over ỸJ−1. By definition of α-Renyi divergence, we have

Dα(p, q | r) ≥ inf
ỹJ−1

1

α− 1
log

∑
ỹJ∈Ỹ

p(ỹJ | ỹJ−1)αq(ỹJ | ỹJ−1)1−α

= inf
ỹJ−1

Dα(pỹJ |ỹJ−1 , qỹJ |ỹJ−1)

(a)

≥ inf
p∈QxJ

0 ,q∈QxJ
1

Dα(p, q)
(b)

≥ ηJ ,

where (a) follows since pỹJ |ỹJ−1 ∈ QxJ
0 and qỹJ |ỹJ−1 ∈ QxJ

1 by the definition of QJ
0 and QJ

1 ; (b)
follows by assumption. The result then follows by induction hypothesis Dα(p

(1), q(1)) ≥
∑J−1

t=1 ηt,
since p(1) ∈ QJ−1

0 and q(1) ∈ QJ−1
1 .

The following result converts the Renyi divergence based bounds to that with Hellinger divergence.

Proposition 3. Let QJ
0 and QJ

1 be the sets in Theorem 4. If H2(Qxt
0 ,Q

xt
1 ) ≥ γt ≥ 0 holds for all

t ∈ [J ]. Then

inf
p∈QJ

0 ,q∈QJ
1

H2(p, q) ≥ 2

(
1−

J∏
t=1

(1− γt/2)

)
.

Proof. Observe that, for any distributions p, q we have

H2(p, q) = 2(1− e−
1
2D1/2(p,q)). (17)
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Specifically, for give p ∈ QJ
0 and q ∈ QJ

1 , we have

1−H2(p, q)/2 = e−
1
2D1/2(p,q) ≤ e−

1
2

∑J
t=1 ηt =

J∏
t=1

e−
1
2ηt ≤

J∏
t=1

(1− γt/2),

where ηts are the constants in Proposition 2 and the last inequality follows by e−
1
2ηt ≤ 1− γt/2 due

to (17) again. This completes the proof.

Proof of Theorem 4. We have, by Lemma 5, that the testing error is upper bounded by 2(1 −
infp∈QJ

0 ,q∈QJ
1
||p− q||TV). Fix any such p, q, we have by [17, Equation 7.22] that 1− ||p− q||TV ≤

1− 1
2H

2(p, q). The result then follows by Proposition 3.

D Proof of Theorem 2 (Lower Bound)

We denote L ≤ logK with K = |H|, and x1, · · · ,xL be L distinct elements in X satisfies the
condition of the theorem. We define for any b ∈ {0, 1}L a function hb such that for all i ∈ [L],
hb(xi) = yi if b[i] = 0 and hb(xi) = y′i otherwise, where yi ̸= y′i ∈ Y are the elements that
satisfy infp∈Qxi

yi
,q∈Qxi

y′
i

{H2(p, q)} ≤ γH. Let H be the class consisting of all such hb. Let qi ∈ Qxi
yi

and q′i ∈ Qxi

y′
i

be the elements satisfying H2(qi, q
′
i) ≤ γH. We now partition the features xT into

L epochs, each of length T/L, such that each epoch i has constant feature xi. Let h be a random
function selected uniformly from H. We claim that for any prediction rule ŷt and any epoch i we
have

Eh,ỹT

 (i+1)T/L∑
t=iT/L−1

1{h(xt) ̸= ŷt}

 ≥ Ω

(
1

γH

)
, (18)

where ỹt ∼ qi if h(xi) = yi and ỹt ∼ q′i otherwise. The proposition now follows by counting the
errors for all L epochs.

We now establish (18) using the Le Cam’s two point method. Clearly, for each epoch i, the prediction
performance depends only on the label yi = h(xi), which is uniform over {yi, y′i} and independent
for different epochs by construction. For any time step j during the ith epoch, we denote by ỹj−1

and ỹ′j−1 the samples generated from qi and q′i, respectively. By the Le Cam’s two point method [17,
Theorem 7.7] the expected error at step j is lower bounded by

1− TV(ỹj−1, ỹ′j−1)

2
≥

1−
√
H2(ỹj−1, ỹ′j−1)(1−H2(ỹj−1, ỹ′j−1)/4)

2
(19)

where the inequality follows from [17, Equation 7.22]. Note that the RHS of (19) is monotone
decreasing w.r.t. H2(ỹj−1, ỹ′j−1), since H2(p, q) ≤ 2 for all p, q.

By the tensorization of Hellinger divergence [17, Equation 7.23], we have

H2(ỹj−1, ỹ′j−1) = 2− 2(1−H2(qi, q
′
i)/2)

j−1 ≤ 2− 2(1− γH/2)
j−1,

where the last inequality is implied by H2(qi, q
′
i) ≤ γH. Using the fact log(1− x) ≥ −x

1−x , we have
if γH ≤ 1 and j − 1 ≤ 1

γH
then 2 − 2(1 − γH/2)

j−1 ≤ 2(1 − e−1) < 2. Therefore, the RHS of
(19) is lower bounded by an absolute positive constant for all j − 1 ≤ 1

γH
, and hence the expected

cumulative error will be lower bounded by Ω(1/γH) during epoch i. This completes the proof.

E Proof of Lemma 2

Before presenting a formal proof, we first develop some technical concepts. Let Ỹ be the noisy
label set and D(Ỹ) be the class of distributions over Ỹ . We say a function ℓ : Ỹ × D(Ỹ) → R+ is
α-exp-concave if for any ỹ ∈ Ỹ , the function e−αℓ(ỹ,p) is concave w.r.t. p for some α ∈ R≥0.

Proposition 4. The function ℓ(ỹ, p) = ||eỹ − p||22 is 1/4-Exp-concave, where eỹ denotes distribution
assigning probability 1 on ỹ.
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Proof. We have by [13, Lemma 4.2] that a function f is α-Exp-concave if and only if

α∇f(p)∇f(p)T ⪯ ∇2f(p).

For any q ∈ D(Ỹ), we denote f(p) = ||p − q||22. We have ∇f(p) = 2(p − q) and ∇2f(p) = 2I ,
where I is the identity matrix. Taking any u ∈ RJ , we have 1

4 ⟨u, 2(p − q)⟩2 ≤ ||u||22||p − q||22 ≤
2||u||22 = 2uTIu, where the first inequality follows by Cauchy-Schwarz inequality and the second
inequality follows by:

||p− q||22 =
∑
ỹ∈Ỹ

(p[ỹ]− q[ỹ])2 ≤
∑
ỹ∈Ỹ

max{p[ỹ], q[ỹ]}2 ≤
∑
ỹ∈Ỹ

p[ỹ]2 + q[ỹ]2 ≤ 2,

since p, q ∈ D(Ỹ). This completes the proof.

We now introduce the Exponential Weighted Average (EWA) algorithm and its regret analysis under the
Exp-concave losses, which is mostly standard [5, Chapter 3.3] and we include it here for completeness.
Let F = {f1, · · · , fK} ⊂ D(Ỹ)X be a D(Ỹ)-valued function class and ℓ : Ỹ × D(Ỹ) → R≥0 be
α-Exp-concave. The EWA algorithm is presented in Algorithm 2.

Algorithm 2: Exponential Weighted Average (EWA) estimator
Input: Class F = {f1, · · · , fK} and α-Exp-concave loss ℓ
Set w1 = {1, · · · , 1} ∈ RK ;
for t = 1, · · · , T do

Receive xt;
Make prediction:

p̂t =

∑K
k=1 w

t[k]fk(xt)∑K
k=1 w

t[k]
.

Receive noisy label ỹt;
for k ∈ [K] do

Set wt+1[k] = wt[k]e−αℓ(ỹt,fk(xt));

Algorithm 2 provides the following regret bound:

Proposition 5 ([5, Proposition 3.1]). Let F ⊂ D(Ỹ)X be any finite class and ℓ be an α-Exp-concave
loss. If p̂t is the estimator in Algorithm 2, then for any xT ∈ X T and ỹT ∈ ỸT we have

sup
f∈F

T∑
t=1

ℓ(ỹt, p̂t)− ℓ(ỹt, f(xt)) ≤
log |F|
α

.

Proof of Lemma 2. Let Φ be the EWA estimator as in Algorithm 2 with input class F , loss ℓ(ỹ, p) def
=

L2(eỹ, p) and α = 1/4. Let ỹT be any realization of the noisy labels. We denote et as the standard
base of RM with value 1 at position ỹt and zeros otherwise. By 1/4-Exp-concavity of loss ℓ
(Proposition 4) and the regret bound from Proposition 5, we have:

sup
f∈F,xT∈XT ,ỹT∈ỸT

T∑
t=1

L2(et, p̂t)− L2(et, f(xt)) ≤ 4 log |F|. (20)

Note that, this bound holds point-wise w.r.t. any individual xT and ỹT .

Fix any xT and (joint) distribution p̃ over ỸT . We denote Et as the conditional expectation on ỹt over
the randomness of ỹT ∼ p̃ conditioning on ỹt−1 and denote p̃t as the conditional marginal. By the
elementary identity E[L2(X, p)−L2(X, q)] = L2(E[X], p)−L2(E[X], q) for any random variable
X over D(Ỹ), we have for all t ∈ [T ] that:

Et

[
L2(et, p̂t)− L2(et, f(xt))

]
= L2(p̃t, p̂t)− L2(p̃t, f(xt)),
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since Et[et] = p̃t for ỹt ∼ p̃t and p̂t depends only on ỹt−1. We now take EỹT on both sides of (20).
By supE ≤ E sup and the law of total probability (i.e., EỹT [X1 + · · ·+XT ] = EỹT [E1[X1] + · · ·+
ET [XT ]] for any random variables XT ), we have:

sup
f∈F,xT∈XT

sup
p̃

EỹT∼p̃

[
T∑

t=1

L2(p̃t, p̂t)− L2(p̃t, f(xt))

]
≤ 4 log |F|,

where p̃ runs over all (joint) distributions over ỸT . The lemma then follows by the equivalence
between operators QT

K ≡ supp̃ EỹT when taking the kernel set Qx
y := D(Ỹ) for all x, y (see

the discussion following Definition 1). The last part follows by the fact that the EWA estimator
automatically ensures p̂t is a convex combination of {f(xt) : f ∈ F} for all t ∈ [T ].

F Proof of Theorem 5

We define the following distribution valued function class F using hypothesis class H and noisy
kernel K. For any x ∈ X , we denote by Qx

0 and Qx
1 the sets of noisy label distributions corresponding

to labels 0 and 1, respectively. Since the kernel K is well-separated at scale γL under L2 divergence,
we have, by the hyperplane separation theorem, that there must be qx0 ∈ Qx

0 and qx1 ∈ Qx
1 such

that L2(qx0 , q
x
1 ) = L2(Qx

0 ,Qx
1 ) ≥ γL. We now define for any h ∈ H the function fh such that

∀x ∈ X , fh(x) = qxh(x). Let F = {fh : h ∈ H} and Φ be the estimator from Lemma 2 with class
F and L2 divergence (using xT , ỹT from the original noisy classification game). Our classification
predictor is as follows:

ŷt = argmin
y

{L2(qxt
y , p̂t) : y ∈ {0, 1}}. (21)

That is, we predict the label y so that qxt
y is closer to p̂t under L2 divergence, where p̂t = Φ(xt, ỹt−1).

Let h∗ ∈ H be the underlying true classification function and xT be the realization of features. We
have by Lemma 2 and 1/4-Exp-concavity of L2 divergence that 8

QT
K

[
T∑

t=1

L2(p̃t, p̂t)− L2(p̃t, fh∗(xt))

]
≤ 4 log |F|, (22)

where QT
K is the operator in Definition 1.

For any time step t, we denote by yt = h∗(xt) the true label. Since qxt
y ∈ Qxt

y are the elements
satisfying L2(qxt

0 , q
xt
1 ) = L2(Qx1

0 ,Qxt
1 ) ≥ γL and q̂t is a convex combination of qxt

0 and qxt
1

(Lemma 2), we have qxt
yt

is the closest element in Qxt
yt

to p̂t under L2 divergence. Note that, we also
have p̃t ∈ Qxt

yt
. Invoking Lemma 1, we find

L2(p̃t, p̂t)− L2(p̃t, q
xt
yt
) ≥ L2(p̂t, q

xt
yt
). (23)

Denote at = L2(p̃t, p̂t) − L2(p̃t, fh∗(xt)). We have, by (23) and fh∗(xt) = qxt
yt

that at ≥
L2(p̂t, fh∗(xt)). Therefore:

1. For all t ∈ [T ], at ≥ 0, since ∀p, q, L2(p, q) ≥ 0;
2. If ŷt ̸= yt, then at ≥ γL/4. This is because the event {ŷt ̸= yt} implies that L2(p̂t, q

xt
yt
) ≥

L2(p̂t, q
xt
1−yt

). Hence, L2(p̂t, fh∗(xt)) = L2(p̂t, q
xt
yt
) ≥ γL/4. Here, we used the following

geometric fact:

2
√
L2(p̂t, q

xt
yt ) ≥

√
L2(p̂t, q

xt
yt ) +

√
L2(p̂t, q

xt
1−yt

)

=
√
L2(qxt

yt , q
xt
1−yt

) ≥ √
γL.

This implies that ∀t ∈ [T ], at ≥ γL

4 1{ŷt ̸= yt}, therefore:
T∑

t=1

1{ŷt ̸= yt} ≤ 4

γL

T∑
t=1

L2(p̃t, p̂t)− L2(p̃t, fh∗(xt)).

The expected minimax risk now follows from (22).
8Since QT

K[F (ỹT )] ≤ QT [F (ỹT )] for any kernel K and function F , where QT is the unconstrained operator
in (10).
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G Tight Bounds for Kernel Sets of Size One

In this appendix, we establish an upper bound for the case when the kernel set size |Qx
y | = 1 for all

x, y. This includes, for instance, the case when the parameter ηt is known in Example 1.
Theorem 6. Let H ⊂ YX be any finite class and K be any noisy kernel that is well-separated at
scale γH w.r.t. squared Hellinger distance such that |Qx

y | = 1 for all x, y. Then the high probability
minimax risk at confidence δ > 0 is upper bounded by

Bδ(H,K) ≤ O

(
log(|H|/δ)

γH

)
.

Proof. Our proof follows a similar path as in the proof of Theorem 5, but replacing the L2 loss with
log-loss. Specifically, for any h ∈ H, we define fh(x) = qxh(x), where qxh(x) is the unique element in
Qx

h(x). Denote F = {fh : h ∈ H}. We run the EWA algorithm (Algorithm 2) over F with α = 1

and ℓ being the log-loss [10], and produce an estimator p̂T . The classifier is then given by

ŷt = argmin
y∈Y

{H2(qxt
y , p̂t)}.

Now, our key observation is that the noisy label distribution p̃t = fh∗(xt) is well-specified (since
|Qx

y | = 1, the only choice for p̃t is fh∗(xt)), where h∗ is the ground truth classifier. Therefore,
invoking [10, Lemma A.14], we find

Pr

[
T∑

t=1

H2(p̃t, p̂t) ≤ log |F|+ 2 log(1/δ)

]
≥ 1− δ.

We claim that 1{ŷt ̸= h∗(xt)} ≤ 4
γH
H2(p̃t, p̂t). Clearly, this automatically satisfies if ŷt = h∗(xt).

For ŷt ̸= h∗(xt), we have H2(qxt

ŷt
, p̂t) ≤ H2(qxt

h∗(xt)
, p̂t) = H2(p̃t, p̂t) by definition of ŷt. This

implies that

H2(p̃, p̂t) ≥
1

4
H2(qxt

ŷt
, qxt

h∗(xt)
) ≥ γH

4
,

where the first inequality follows by triangle inequality of Hellinger distance (the factor 1
4 comes

from the conversion form squared Hellinger distance to Hellinger distance), and the second inequality
follows by definition of γH. Therefore, we have w.p. ≥ 1− δ that

T∑
t=1

1{ŷt ̸= h∗(xt)} ≤ 4

γH

(log |F|+ 2 log(1/δ)).

This completes the proof since |H| ≥ |F|.

Observe that the key ingredient in the proof of Theorem 6 is the realizability of p̃t by fh∗ (i.e.,
well-specified) due to the property |Qx

y | = 1, which does not hold for general kernels.

H Adaptive v.s. Oblivious Adversaries

In this appendix, we explain how the guarantees for oblivious adversaries can be extended to adaptive
adversaries. This primarily follows from [5, Lemma 4.1], but needs careful adaptation to fit our needs.
We consider the following abstract treatment: we assume that the adversary performs any operation
Qt at time step t and produces an action zt. For any randomized prediction rule ŷT , the adaptive risk
can be expressed as

Q1Eŷ1
· · ·QTEŷT

[
T∑

t=1

ℓ(zt, ŷt)

]
.

Assume now that the randomness of ŷt’s is independent and that ŷt depends only on zt. We claim
that

Q1Eŷ1
· · ·QTEŷT

[
T∑

t=1

ℓ(zt, ŷt)

]
= QTEŷT

[
T∑

t=1

ℓ(zt, ŷt)

]
.
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We prove the case for T = 2 to demonstrate the ideas; the general case follows by induction. Observe
that

Q1Eŷ1Q2Eŷ2 [ℓ(z1, ŷ1) + ℓ(z2, ŷ2)]
(a)
= Q1Eŷ1 [ℓ(z1, ŷ1) +Q2Eŷ2ℓ(z2, ŷ2)]

(b)
= Q1[Eŷ1 [ℓ(z1, ŷ1)] + Eŷ1Q2Eŷ2ℓ(z2, ŷ2)]

(c)
= Q1[Eŷ1 [ℓ(z1, ŷ1)] +Q2Eŷ2ℓ(z2, ŷ2)]

(d)
= Q1Q2[Eŷ1 [ℓ(z1, ŷ1)] + Eŷ2 [ℓ(z2, ŷ2)]]

(e)
= Q1Q2Eŷ1Eŷ2 [ℓ(z1, ŷ1) + ℓ(z2, ŷ2)]

where (a) follows since ℓ(z1, ŷ1) is independent of Q2Eŷ2
; (b) follows by the linearity of expectation;

(c) follows by the independence of ŷ1 and ŷ2, since the term Q2Eŷ2
ℓ(z2, ŷ2) has nothing to do with

the realization of ŷ1; (d) follows since Eŷ1
[ℓ(z1, ŷ1)] is independent of z2; (e) follows by the linearity

of expectation.

Observe that, all the predictors constructed in this paper have independent internal randomness (in
fact, the only place where randomness is introduced is in Algorithm 1); thus, our derived risk bounds
hold for adaptive adversaries as well.
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