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Abstract
Modern foundation models are evaluated through
broad capabilities such as arithmetic, reasoning,
safety, and robustness, yet it remains unclear in
a principled sense when finitely tests can mean-
ingfully certify such claims. We develop a rigor-
ous theory of capability evaluation by formalizing
evaluation as inference over a task family and
asking when guarantees over the full family can
be inferred from a strict subset of tests. We ana-
lyze two canonical regimes. In stochastic multi-
environment evaluation, we characterize when
uniform certification is possible across multiple
environments and show that the sample complex-
ity is governed by a χ2-radius of the environment
family, yielding near-optimal evaluation protocols
with matching lower bounds under a natural over-
lap condition. In contrast, for worst-case, rule-like
capabilities, we establish fundamental impossibil-
ity results. Even for structured model classes such
as Boolean circuits of bounded size, black-box
evaluation cannot, in general, certify global prop-
erties. Together, these results provide a principled
framework for understanding when finite evalua-
tion can and cannot certify capabilities.

1. Introduction
Modern machine learning systems are increasingly assessed
by their broader capabilities rather than performance on
a single task. For example, we ask whether a model can
reliably carry out arithmetic reasoning, behave safely across
diverse prompts, or generalize across distributions and task
formats. Such questions are now central to how we evaluate
large language models (LLMs) and other foundation mod-
els (Liang et al., 2022; Vendrow et al., 2025). Yet we still
lack a clear theory for when and how a capability claim can
be justified from a finite set of tests.

Most existing evaluations are benchmark-driven. Static test
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suites such as GLUE and SuperGLUE (Wang et al., 2018;
2019) were designed to measure broad progress, but large
models quickly saturated them, often without commensu-
rate gains in robustness or reliability (Vendrow et al., 2025).
More recent efforts like BIG-bench (Srivastava et al., 2023)
and HELM expand coverage to hundreds of tasks and met-
rics, but they remain finite collections with fixed test sets.
In parallel, dynamic and adversarial efforts such as Dyn-
abench (Kiela et al., 2021) highlight a recurring gap: strong
performance on established benchmarks does not necessar-
ily carry over to newly created or rare cases. The common
thread is that benchmark scores summarize behavior on a
limited set of instances, while capability claims are implic-
itly about a much larger family.

These developments raise a foundational question:

When can finite evaluation genuinely certify a
model’s capability, and when is such certification
fundamentally impossible?

This paper argues that addressing this question requires
reframing evaluation as an inference problem rather than
benchmark scoring. The key observation is that a capa-
bility is not tied to a fixed test set; instead, it should be
defined over a task family together with an aggregation rule
over outcomes. For example, arithmetic capability concerns
correctness across the full set of relevant problems, while
safety capability concerns behavior across a broad space of
prompts and contexts. Evaluation is therefore the problem
of inferring a global property of a model over an entire task
family from only finitely many observed interactions.

We formalize this viewpoint in a general framework for
capability evaluation. A task family T defines the scope
of behavior we wish to certify. A model f (viewed as a
black-box response function or induced response process)
interacts with tasks in T , and a capability is a functional
CT (f) of the model’s induced responses over all tasks in
T . An evaluation protocol may interact with the model
through arbitrary queries, possibly adaptive and not drawn
from T , and must infer CT (f) from the resulting responses.
Within this framework, an evaluation is generalizable if it
can accurately infer a capability defined over the full task
family while making only finitely many queries.

Importantly, capabilities are defined relative to the choice
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of task family, and different choices of T capture fundamen-
tally different evaluation goals. To avoid an overly broad
narrative and to demonstrate how precise technical results
can be obtained, we focus on two representative evaluation
paradigms that expose sharply contrasting behaviors.

Stochastic task families. Perhaps the simplest and most
widely used form of capability evaluation is to estimate
a model’s expected performance under a fixed data distri-
bution using i.i.d. samples. In practice, however, models
are deployed across domains and populations, so evalua-
tion must often certify performance across multiple envi-
ronments. This motivates our first evaluation setting. We
are given an environment family P ⊂ ∆(Z) and a fixed
stochastic model f , whose response (and hence loss ℓf ) may
be randomized. The capability of interest is the risk profile

µp(f) := Ez∼p[E[ℓf (z) | z]] , ∀p ∈ P,

where expectation is over both p and f . We seek to esti-
mate {µp(f)}p∈P simultaneously using only finitely many
queries to f , with high-probability uniform guarantees over
p ∈ P . We show that without additional structure relat-
ing environments, a worst-case lower bound of Ω(m/ε2)
samples is unavoidable when |P| = m. We then iden-
tify when evaluation becomes effective by introducing the
χ2-radius V (P), which quantifies how well P can be simul-
taneously covered by a single proposal distribution, and we
give a protocol achieving O

(
(1+V (P)) log(m/δ)

ε2

)
samples

for estimating the full risk profile. Finally, we establish
near-tightness by showing that the dependence on V (P)
is unavoidable for natural evaluation strategies. Moreover,
even when V (P) = O(1), estimating the entire profile still
requires Ω((logm)/ε2) samples, even for fully adaptive
protocols. We also extend the framework to infinite families
P via covering arguments, yielding generalizable evaluation
guarantees under metric structure.

Combinatorial task families. A key feature of the
stochastic paradigm is that, because tasks are specified by
distributions, generalization can be certified from i.i.d. sam-
pling without relying on the internal structure of f . This
changes qualitatively for combinatorial task families, where
tasks are discrete and structured (e.g., arithmetic instances,
logical constraints, or prompt templates) and the capabil-
ity of interest is correctness over an entire combinatorial
set. In this setting, a fixed model can concentrate all of its
errors on a small, unqueried subset of tasks, making finite
testing inherently fragile. We formalize this phenomenon
by proving strong impossibility results showing that, for
natural combinatorial task families and rich model classes
(e.g., Boolean circuits of size s), no evaluation protocol
using T (n) = o(2n/M(s)) queries can reliably distinguish
perfect performance from performance with additive er-
ror M(s), even when the number of queries exceeds the

model’s description length. These lower bounds highlight a
fundamental limitation of benchmark-style certification for
combinatorial reasoning and clarify that meaningful guaran-
tees require additional structure linking the model and the
task family.

Contributions. In summary, this paper makes three key
contributions: (i) we develop a formal theory of capabil-
ity evaluation that treats evaluation as inference over task
families and characterizes when finite testing can general-
ize to certify a capability over an entire family; (ii) in the
stochastic multi-environment regime, we give protocols and
nearly matching lower bounds, showing that the sample
complexity is controlled by an intrinsic overlap measure of
the environment family (the χ2-radius); (iii) in the combina-
torial regime, we establish fundamental impossibility results
showing that without explicit structure linking the model
and the task family, finite black-box evaluation cannot cer-
tify global correctness. Together, these results provide sharp
characterizations of the information-theoretic limits of certi-
fying capabilities from finitely many tests.

1.1. Related Work

A large body of work evaluates general-purpose models via
aggregate performance on fixed task suites, from early multi-
task benchmarks such as GLUE and SuperGLUE (Wang
et al., 2018; 2019) to broader collections like BIG-bench and
HELM (Srivastava et al., 2023; Liang et al., 2022). These
benchmarks have been instrumental in tracking empirical
progress, but their finiteness leaves implicit the inferential
leap from performance on a particular suite to claims about
a model’s behavior over a broader task family. Dynamic
and adversarial evaluation efforts such as Dynabench (Kiela
et al., 2021) sharpen this concern by adaptively generating
new test cases that surface previously hidden failure modes,
underscoring the brittleness of static evaluation. Our work
targets a more foundational question: what, if anything,
can finite evaluation certify about a model’s behavior over
an entire task family? From a theoretical perspective, our
multi-environment setting is closest in spirit to multi-mean
(or multi-expectation) estimation, where shared samples
are allocated to estimate many quantities efficiently (Elvira
et al., 2015; Demange-Chryst et al., 2023). This line of work
emphasizes variance reduction for finite distribution fami-
lies, but it does not typically provide sharp high-probability
query-complexity characterizations. Our impossibility re-
sult in the combinatorial regime is also philosophically
aligned with recent work framing limits of backdoor de-
tection (Pichler et al., 2024), as well as earlier works on
formal verification of neural networks (Katz et al., 2017;
Ehlers, 2017), though they concern different objects and fail-
ure modes. More broadly, a large body of work in theoretical
computer science and information theory studies the sample
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complexity of testing and learning from unknown distri-
butions, including identity, closeness, and independence
testing (Canonne, 2020), as well as work deriving minimax
rates and information-theoretic lower bounds under struc-
tural or communication constraints (Acharya et al., 2015;
Canonne et al., 2018; Diakonikolas et al., 2014; Acharya
et al., 2019). These results characterize the statistical dif-
ficulty of learning from unknown distributions, but they
generally do not capture the structural coupling induced by
evaluating many tasks on a single fixed model.

2. Problem Formulation
We formalize capability evaluation as inference over a spec-
ified task family T . A capability is a claim about a model’s
performance across all tasks in T (e.g., k-digit addition,
robustness across environments, or safety over a class of
prompts). An evaluation protocol observes only finitely
many interactions with the model, yet aims to infer or cer-
tify such a family-level claim.

2.1. Models

A model is the system under evaluation. We represent it by
an element f ∈ F , where F is a class of possible models
(e.g., trained LLM checkpoints, neural networks, or Boolean
circuits of bounded size). The model is fixed throughout
evaluation: it cannot be retrained, modified, or inspected
internally. The model may be deterministic or internally
randomized, but each interaction induces a well-defined
distribution over observable responses.

2.2. Tasks, raw outputs, and task responses

A task is a unit of interaction that specifies what the model
faces in the world and how success is judged. Let T denote
a (possibly infinite) task family of interest. Each task t ∈ T
specifies (i) what input, prompt, or environment is presented
to the model, and (ii) how the model’s output is judged.

When the model f is applied under task t, it produces a
raw output O ∈ Ot (e.g., a string, code, an action, or a
probability vector). Evaluation does not usually operate on
O directly. Instead, task t comes with an evaluation map
ϕt : Ot → Lt, possibly randomized, which produces the
observable task response L = ϕt(O) ∈ Lt. The response
L is the only quantity available to the evaluator. It may be
binary (pass/fail), real-valued (loss or score), or categorical.
When the task is stochastic (due to the task data samples
and/or the model f being randomized), repeated interactions
with the same t yield i.i.d. draws from a task-dependent
response distribution, which we denote by P ft over Lt.

Example 1 (Multi-environment evaluation). Many bench-
marks aim to certify performance across multiple environ-
ments or domains. Let T index environments (possibly

infinite). Each task t ∈ T specifies a data distribution P ′
t

and draws (X,Y ) ∼ P ′
t , where Y ∈ Yt is the label. The

model outputs O = f(X), and the evaluation map returns
the loss L = ℓ(O, Y ) ∈ [0, 1]. We denote the induced dis-
tribution of L as P ft (over Lt = [0, 1]).
Example 2 (Arithmetic evaluation). Each task specifies a
pair (a, b) of k-digit integers. An input prompt encodes
(a, b), and the model outputs a stringO. The evaluation map
checks whetherO equals a+b and returns a binary loss L ∈
{0, 1}. This defines a combinatorial task family in which
capability corresponds to correctness over all instances.

2.3. Capabilities

Definition 2.1 (Capability). Given a task family T , a capa-
bility is any functional CT : F → VT , where the codomain
VT may depend on T , and CT depends only on the collec-
tion of task-response laws {P ft : t ∈ T } induced by the
model f on the target tasks.

Intuitively, a model’s capability with respect to a target task
family is a compact “summary” of how the model behaves
across the entire set of tasks in that family.
Example 3. In the multi-environment evaluation (Exam-
ple 1), common capabilities include

• Risk profile: CT (f) = {µt(f)}t∈T , and

• Worst-case risk: CT (f) = supt∈T µt(f),

where µt(f) = EL∼P f
t
[L].

2.4. Evaluation protocols and generalization

An evaluation protocol is a procedure that queries a black-
box model f , potentially using queries outside the task
family T , and aggregates the observed responses to estimate
the target capability CT (f).
Definition 2.2 (Evaluation protocol). An evaluation proto-
col Π consists of (i) a (possibly adaptive) rule that selects
queries q1, . . . , qm, and (ii) an estimator that maps the tran-
script (q1, L1), . . . , (qm, Lm) to an estimate Ĉ ∈ VT . When
a query corresponds to executing a target task t ∈ T , we
may write it as (t, Lt); in general, qk need not lie in T .

Definition 2.3 (Capability evaluation). Let ε > 0 and δ ∈
(0, 1). An evaluation protocol Π (ε, δ)-evaluates CT over F
if for every f ∈ F ,

Pr
(
d
(
Ĉ, CT (f)

)
≤ ε
)
≥ 1− δ,

where the probability is over the protocol’s internal random-
ness and the randomness of the observed responses, and d is
a metric on VT (e.g., d(x, y) = ∥x− y∥∞ when VT ⊆ Rd).
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An evaluation protocol is (ε, δ)-generalizable if, using
a finite number of interactions with the model, it (ε, δ)-
evaluates the target capability over the entire task fam-
ily T (Definition 2.3). We refer to the minimum number
of interactions with the model sufficient to achieve (ε, δ)-
generalizability as the sample complexity.

3. Main Results
In this section, we study several concrete capability esti-
mation settings under the general framework introduced in
Section 2. These settings are not meant to be exhaustive.
Rather, they are chosen to demonstrate how careful formu-
lation and structural assumptions enable precise theoretical
characterizations of what can and cannot be inferred about
a model’s capabilities.

3.1. Stochastic Multi-Environment Evaluation

Perhaps the simplest and most widely used form of capa-
bility estimation, often adopted implicitly, is to evaluate a
model’s expected performance under a fixed data distribu-
tion using i.i.d. samples. In this regime, evaluation amounts
to inferring the model’s behavior on future draws from the
same distribution. This paradigm underlies much of stan-
dard practice, including cross-validation, hold-out testing,
and empirical risk estimation on benchmark datasets, and
enjoys a crucial but often overlooked property: its validity
relies solely on i.i.d. sampling and does not depend on any
structural assumptions about the model under evaluation.

However, this single-distribution viewpoint tightly couples
evaluation to the particular data-generating process used for
testing. When models are deployed across multiple environ-
ments, heterogeneous populations, or shifting data sources,
performance under one distribution provides no principled
guarantee about behavior under others. This limitation moti-
vates the study of multi-distribution capability estimation, in
which evaluation must infer and certify a model’s behavior
across a collection (possibly infinite) of distinct distributions
rather than a single one.

Formally, we consider a collection of data-generating pro-
cesses (i.e., environments) P ⊂ ∆(X × Y), where X is
the input space and Y is the output space. Each p ∈ P
represents a ground-truth data distribution. A model is an
unknown stochastic predictor f : X → ∆(Y) (e.g., a LLM),
and we assume a known loss function ℓ : Y × Y → [0, 1].
For a data point z = (x, y), we define the induced (ran-
dom) loss ℓf (z) := ℓ(f(x), y) and its conditional mean
ℓ̄f (z) := E[ℓf (z) | z] 1. The evaluation protocol interacts
with the model only through the induced loss ℓf .

An evaluation protocol, with knowledge of the environment

1Expectation over the model’s internal randomness.

set P , generates a sequence of test data points z1, . . . , zn ∈
X × Y , possibly adaptively and using its own internal ran-
domness. Upon querying these points, the protocol observes
the corresponding losses ℓf (z1), . . . , ℓf (zn). The goal is to
estimate the model’s risk profile{

µp(f) := Ez∼p[ℓ̄f (z)] : p ∈ P
}
,

that is, to infer the expected performance of f under ev-
ery environment in P simultaneously using only a finite
collection of test samples.

An evaluation protocol E is said to be (ε, δ)-generalizable
with sample size n if the following holds. For every model
f : X → ∆(Y) and loss ℓ : Y × Y → [0, 1],

Pr

(
sup
p∈P

∣∣ℓ̂f (p)− Ez∼p[ℓ̄f (z)]
∣∣ ≥ ε

)
≤ δ,

where the probability is taken over the randomness of the
queried data points z1, . . . , zn generated by E and ℓ̂f (p)
denotes the estimate of Ez∼p[ℓ̄f (z)] produced by E using
the observed transcript

{
(z1, ℓf (z1)), . . . , (zn, ℓf (zn))

}
.

3.1.1. EVALUATION PROTOCOLS FOR FINITE P

We first consider the case where the environment class P is
finite, with |P| = m. The following proposition shows that,
without additional structure relating the environments, capa-
bility estimation cannot substantially outperform evaluating
each environment independently.

Proposition 3.1 (Lower bound for finite P). There exists
a finite environment class P = {p1, . . . , pm} such that
any (ε, δ)-generalizable evaluation protocol must use n =
Ω(m/ε2) samples, for any fixed δ < 1/2.

Proof. Let X = {x1, . . . , xm} and Y = {0, 1}, and use
the 0–1 loss ℓ(y′, y) = 1{y′ ̸= y}. For each i ∈ [m],
define environment pi by setting X ≡ xi and Y ≡ 0 almost
surely. For a stochastic model f , write f(x) ∈ ∆({0, 1})
for its output distribution, and let ℓf (x) denote the induced
(random) loss under Y ≡ 0. Then

µi(f) := Ez∼pi [ℓ̄f (z)] = Pr
O∼f(xi)

[O = 1].

Fix ε ∈ (0, 1/8). We draw a random stochastic model f
as follows: independently for each i ∈ [m], sample Si ∈
{+1,−1} uniformly and set

f(xi) = Bern
(
1
2 + 2εSi

)
.

Under this construction, µi(f) = 1
2 + 2εSi exactly, and the

{µi(f)}mi=1 are independent. In particular, any estimator
satisfying |µ̂i − µi(f)| ≤ ε must identify the sign Si.

Let E be any (possibly adaptive and randomized) protocol
that makes n total queries to f , and let Ni be the (random)
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number of queries issued at xi. Then
∑m
i=1Ni = n al-

most surely, so
∑m
i=1 E[Ni] = n and there exists i⋆ with

E[Ni⋆ ] ≤ n/m. Conditioned on Si⋆ , the observations from
queries at xi⋆ are i.i.d. Bernoulli with mean 1

2 ± 2ε, and
Ni⋆ is a (data-dependent) stopping time. By the sequential
testing lower bound (Corollary B.2), identifying Si⋆ with
constant success probability requires E[Ni⋆ ] = Ω(1/ε2).
Therefore, if n≪ m/ε2, then E[Ni⋆ ] ≪ 1/ε2, and E fails
to estimate µi⋆(f) within error ε with constant probability
under the above random draw of f .

Remark 3.2. A simple protocol achieves sample complexity
O
(
m log(m/δ)

ε2

)
by drawing O(log(m/δ)/ε2) i.i.d. samples

from each environment pi, producing the empirical risk
estimate for each µi(f), and applying a union bound to
guarantee supi∈[m] |µ̂i − µi(f)| ≤ ε w.p. ≥ 1− δ.
Remark 3.3. The lower bound in Proposition 3.1 continues
to hold even when the goal is only to estimate the worst-case
risk maxi∈[m] µi(f) up to error ε. In our construction, the
maximizing environment is unknown and may be any block,
so identifying the worst case necessarily requires resolving
the same hard Bernoulli mean estimation instances. Thus,
without additional structure on P , estimating the worst-case
risk is no easier than estimating the full risk profile.

Now, a natural question is what structural property of the
family P allows for capability estimation beyond the pes-
simistic Ω(m/ε2) lower bound. We show that when the
environments admit a common proposal distribution with
bounded χ2 divergence, the sample complexity depends on
the resulting χ2-radius rather than on m. To formalize this
notion, consider a family P = {p1, . . . , pm} of distributions
on a common domain Z , and define the χ2-radius 2

V (P) := inf
q∈∆(Z): pi≪q ∀i

max
i∈[m]

χ2(pi∥q), (1)

where the χ2 divergence is given by

χ2(p∥q) :=
∫ (dp

dq
− 1
)2
dq. (2)

The following theorem shows that V (P) controls the sample
complexity of multi-distribution evaluation.
Theorem 3.4 (χ2-radius upper bound). Let P =
{p1, . . . , pm} be a collection of probability distributions
on a common domain Z with χ2-radius V (P). Then there
exists an evaluation protocol that is (ε, δ)-generalizable for
the full risk profile {µi(f)}mi=1 with sample size

n = O

(
(1 + V (P)) log(m/δ)

ε2

)
.

Proof. Fix a distribution q attaining (or approximating) the
infimum in the definition of V (P). The evaluation protocol

2Also known as Rényi information radius in the literature.

draws Z1, . . . , Zn
i.i.d.∼ q and queries the model to obtain

ℓf (Zj) ∈ [0, 1] for each j ∈ [n].

For each environment pi, define the importance-weighted
random variables

Y
(i)
t :=

pi(Zt)

q(Zt)
ℓf (Zt).

Since pi ≪ q, these variables are well defined. Moreover,

E[Y (i)
t ] = Ez∼q

[
pi(z)

q(z)
E[ℓf (z) | z]

]
= Ez∼pi [ℓ̄f (z)] =: µi(f).

We next bound their second moments. Since ℓf (z) ∈ [0, 1]
almost surely,

E[(Y (i)
t )2] ≤ Ez∼q

[(pi(z)
q(z)

)2]
= 1 + χ2(pi∥q) ≤ 1 + V (P).

Hence Var(Y
(i)
t ) ≤ 1 + V (P) for all i.

To obtain uniform high-probability guarantees over i ∈ [m],
we use a median-of-means estimator. Partition the samples
into B = ⌈c log(2m/δ)⌉ disjoint blocks of equal size s =
⌊n/B⌋. For each i, compute the block averages

Ȳ
(i)
b :=

1

s

∑
t∈block b

Y
(i)
t , b = 1, . . . , B,

and output µ̂i as the median of {Ȳ (i)
b }Bb=1.

By Chebyshev’s inequality, for any fixed i and block b,

Pr
(
|Ȳ (i)
b − µi(f)| > ε

)
≤ 1 + V (P)

sε2
.

Choosing s ≥ 8(1 + V (P))/ε2 ensures this probability is
at most 1/8. A standard median-of-means argument then
yields

Pr(|µ̂i − µi(f)| > ε) ≤ δ/m.

Finally, applying a union bound over i ∈ [m] gives

Pr

(
max
i∈[m]

|µ̂i − µi(f)| > ε

)
≤ δ.

The stated sample complexity follows from n = Bs.

Example 4 (Simple bounds on the χ2-radius). Let P =
{p1, . . . , pm} ⊂ ∆(Z). The following choices of q give
immediate upper bounds on V (P) := infqmaxi χ

2(pi∥q).

(1) Taking q = 1
m

∑m
i=1 pi yields V (P) ≤ m.

(2) If Z is finite, taking q = Unif(Z) yields V (P) ≤ |Z|.
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(3) Let S(P) :=
∑
z∈Z supi pi(z) be the Shtarkov sum

(Drmota & Szpankowski, 2023; Wu et al., 2026), and
let q(z) = supi pi(z)

S(P) be the normalized maximum-
likelihood (NML) distribution (Cesa-Bianchi & Lugosi,
2006). Then V (P) ≤ S(P)− 1.

We complement the upper bound in Theorem 3.4 with the
following lower bound, showing that the dependence on
the χ2-radius is unavoidable for a broad class of natural
evaluation protocols.

Theorem 3.5 (χ2-radius lower bound). Let P =
{p1, . . . , pm} be distributions on a common domain Z , and
fix a proposal distribution q such that pi ≪ q for all i. De-
fine Sq(P) := maxi∈[m] Eq[(pi/q)2]. Consider any evalua-
tion protocol that draws samples i.i.d. from q and observes
the corresponding losses. Suppose

max
i∈[m]

ess sup
z∈Z

pi(z)

q(z)
≤ c Sq(P)

ε

for a universal constant c > 0. Then for any fixed δ < 3/8,
achieving (ε, δ)-generalizability requires

n = Ω

(
Sq(P)

ε2

)
.

In particular, since Sq(P) ≥ 1 + V (P) for every q, this
implies the lower bound n = Ω(V (P)/ε2).

Proof sketch. Fix the proposal distribution q used by the
protocol, and choose an index i⋆ such that Sq(P) =
maxi Eq[(pi/q)2] = 1 + χ2(pi⋆∥q). We construct two
stochastic models f+ and f− whose induced losses dif-
fer only through their behavior on samples drawn from q.
Specifically, given a query point Z ∼ q, the observed loss is
Bernoulli with parameter 1

2 ± θ(Z), where θ(Z) is chosen
proportional to the likelihood ratio pi⋆(Z)/q(Z) and scaled
so that |θ(Z)| ≤ 1/4 using the assumed likelihood-ratio
bound. By construction, the conditional mean losses satisfy
ℓ̄f+(Z)− ℓ̄f−(Z) = 2θ(Z), which implies that the induced
risks under environment pi⋆ satisfy µi⋆(f+)− µi⋆(f

−) =
Ez∼pi⋆ [ℓ̄f+(z)− ℓ̄f−(z)] = Θ(ε).

On the other hand, since the protocol observes i.i.d. losses
generated from Zt ∼ q, the KL divergence between the
induced transcript distributions satisfies KL(Pf+∥Pf−) =
O
(
nEz∼q[θ(z)2]

)
= O

(
n ε2/Sq(P)

)
, where the last step

uses the chosen scaling of θ and the definition of Sq(P).
Therefore, unless n = Ω(Sq(P)/ε2), the two models are
statistically indistinguishable (by Pinsker’s and Le Cam’s
inequality), implying a constant probability of error for any
estimator of µi⋆(f) at accuracy ε. The full proof formalizes
this two-point argument and yields the stated Ω(Sq(P)/ε2)
lower bound, which in particular implies Ω(V (P)/ε2) since
Sq(P) ≥ 1 + V (P). See Appendix C for full proof.

Note that the likelihood-ratio condition in Theorem 3.5
holds for many natural proposal distributions, including the
“balanced” proposals such as those in Example 4 (for suffi-
ciently small ε). Moreover, in Appendix E we show that the
same Ω(V (P)/ε2) lower bound extends to fully adaptive
evaluation protocols, provided that the query distribution
they induce (measured under an appropriate null reference
model) satisfies an analogous overlap condition with the en-
vironments. In both settings, this likelihood-ratio condition
informally requires that no environment in P places substan-
tially more probability mass than the protocol’s effective
proposal on vanishingly rare regions of the domain.

At the same time, some form of tail control appears neces-
sary if one wants lower bounds purely in terms of χ2(pi∥q).
Let q be the proposal distribution (or, in the adaptive case,
the reference distribution over queries induced by the pro-
tocol). If an environment pi differs from q only on in-
puts that are extremely unlikely under q, then pi(z)/q(z)
can be huge on that tiny set, causing χ2(pi∥q) to blow
up even when the induced risk is negligible. Concretely,
fix ε > 0, choose η ∈ (0, ε/10], set δ = η3, and let pi
agree with q everywhere except on an environment-specific
region Bi with pi(Bi) = η and q(Bi) = δ; since ℓ̄f is
bounded, the contribution of Bi to Ez∼pi [ℓ̄f (z)] is at most
η ≤ ε/10. Yet on Bi we have pi/q = η/δ = 1/η2, so
χ2(pi∥q) = Ez∼q[(pi/q − 1)2] ≥ q(Bi)(η/δ − 1)2 =
δ(1/η2 − 1)2 ≥ 1/(4η) for η ≤ 1/

√
2, which can be arbi-

trarily large as η → 0. We expect that settling whether the
χ2-radius lower bound holds unconditionally will require
fundamentally new techniques.
Remark 3.6. Importance-weighting ideas related to Theo-
rem 3.4 appear in the multi-distribution mean estimation
literature (e.g., (Elvira et al., 2015; Demange-Chryst et al.,
2023)), which largely emphasizes variance reduction. In
contrast, we focus on uniform, high-probability guarantees
across environments and characterize the resulting sample
complexity. To the best of our knowledge, our formula-
tion of the χ2-radius as the governing complexity parameter
for multi-environment capability evaluation, together with
matching-order lower-bound analysis (under a natural over-
lap condition), has not been previously identified.

3.1.2. EVALUATION PROTOCOLS FOR INFINITE P

The upper bound in Theorem 3.4 scales as O((1 +
V (P)) log(m/δ)/ε2) when |P| = m. At first glance, the
logm factor may appear to be a proof artifact from a union
bound. The next proposition shows that this dependence is
in fact unavoidable, even when the χ2-radius is a constant.
Proposition 3.7 (A necessary log |P| dependence). For
every integer m ≥ 2 there exist a finite domain Z and a
family P ⊂ ∆(Z) with V (P) ≤ 1 and |P| = m such that,
for any fixed δ ∈ (0, 1/6), every (possibly adaptive and
randomized) evaluation protocol that is (ε, δ)-generalizable
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for the full risk profile must use Ω
(

logm
ε2

)
queries.

Proof sketch. Fix an integerm ≥ 2 and setD := ⌈c logm⌉
for a sufficiently large absolute constant c. Let Z = [D]
and let q be uniform on Z . For each half-set A ⊆ [D]
with |A| = D/2, define pA(z) = 2

D1{z ∈ A}. Then
pA/q ∈ {0, 2} and χ2(pA∥q) = 1, hence V (P) = O(1).

Choose m half-sets A1, . . . , Am with pairwise overlaps
close to D/4. For each j ∈ [m], define a randomized model
f (j) that on query z returns a Bernoulli loss with mean
1
2 +

ε
2 (21{z ∈ Aj}−1). Then µAj (f

(j)) = 1
2 +ε/2, while

for k ̸= j one has µAk
(f (j)) ∈ [ 12 − ε/8, 12 + ε/8]. Thus

estimating the full risk profile to accuracy O(ε) identifies
the hidden index j.

For any adaptive query strategy, each observation provides
only O(ε2) information about the hidden index j (a Θ(ε)-
biased coin flip). Hence n queries yield at most O(nε2)
information. By Fano’s inequality, identifying one of m hy-
potheses with constant error requires Ω(logm) information,
so n = Ω((logm)/ε2). Details are in Appendix D.

The preceding proposition shows that a log |P| dependence
is unavoidable for large finite classes. For genuinely infinite
classes, the correct analogue is to replace |P| by an appro-
priate covering number. The next theorem gives an upper
bound obtained by combining (i) a total-variation cover of
P and (ii) the finite-class guarantee on the cover elements.

Theorem 3.8 (Upper bound for infinite classes via total–
variation covering). Let P be a class of distributions on
a common domain Z . Fix ε ∈ (0, 1) and assume that P
admits a finite cover N ⊂ ∆(Z) in total variation with
radius ε/2, i.e., for every p ∈ P there exists ν(p) ∈ N such
that

TV(p, ν(p)) ≤ ε/2.

Then there exists an evaluation protocol that is (ε, δ)-
generalizable for the full risk profile {Ez∼p[ℓ̄f (z)] : p ∈ P}
with sample complexity

O

(
(1 + V (N )) log(|N |/δ)

ε2

)
,

where V (N ) is the χ2-radius of the finite set N .

Proof sketch. Run the finite-class protocol of Theorem 3.4
on the net N to obtain estimates {µ̂ν}ν∈N satisfying
maxν∈N |µ̂ν−Ez∼ν [ℓ̄f (z)]| ≤ ε/2 with probability at least
1 − δ. For an arbitrary p ∈ P , define µ̂p := µ̂ν(p). Since
ℓf ∈ [0, 1], total variation controls expectation differences:∣∣Ep[ℓ̄f ]− Eν(p)[ℓ̄f ]

∣∣ ≤ TV(p, ν(p)) ≤ ε/2.

Combining the two inequalities yields |µ̂p − Ep[ℓ̄f ]| ≤ ε
uniformly over p ∈ P .

We now apply Theorem 3.8 to illustrate how one can esti-
mate risks for uncountably many distributions using a finite
evaluation budget. We consider the length-k Bernoulli prod-
uct family on {0, 1}k, for which the resulting bound depends
nontrivially on k. The key step is that the χ2-radius of a
suitable total-variation cover can be upper bounded by the
Shtarkov sum of the Bernoulli source.

Corollary 3.9 (Bernoulli i.i.d. sources of length k). Let
P = {Bern(θ)⊗k : θ ∈ [0, 1]} be the class of length-k i.i.d.
Bernoulli distributions on Z = {0, 1}k. Assume only that
the induced loss ℓf : Z → ∆([0, 1]) is arbitrary. Then there
exists an evaluation protocol that is (ε, δ)-generalizable for
P with sample complexity

O

(√
k log

(
k
εδ

)
ε2

)
.

Proof sketch. Let pθ = Bern(θ)⊗k. A standard coupling
bound gives TV(pθ, pθ′) ≤ k|θ − θ′|. Hence the grid Θ =
{0,∆, 2∆, . . . , 1} with ∆ = ε/(2k) yields a TV-cover
N := {pθ : θ ∈ Θ} of radius ε/2 and size |N | = O(k/ε).

By Example 4(3), V (N ) ≤ S(N ) where S(N ) is the
Shtarkov sum. Since N ⊆ {pθ : θ ∈ [0, 1]}, we have
S(N ) ≤ Sk, where

Sk :=
∑

z∈{0,1}k

sup
θ∈[0,1]

pθ(z)

is the Shtarkov sum of the length-k Bernoulli source. It
is known that Sk = Θ(

√
k) (see, e.g., (Szpankowski,

1998; Cesa-Bianchi & Lugosi, 2006)). Therefore V (N ) =
O(

√
k), and Theorem 3.8 with |N | = O(k/ε) gives the

claimed sample complexity.

Theorem 3.8 highlights a useful two-stage approach. A TV-
cover controls approximation error when replacing an infi-
nite class by a finite proxy, but by itself does not capture how
efficiently the proxy can be evaluated (the cover may have
exponentially many elements). Conversely, the χ2-radius
controls the evaluation complexity of a finite family, but
by itself does not address infinite classes (Proposition 3.7).
Taken together, these two ingredients yield sharp and some-
times genuinely nontrivial guarantees, as the Bernoulli ex-
ample illustrates: the bound is driven neither by covering
alone nor by χ2-radius alone, but by their interaction.

3.2. Combinatorial Evaluation with Structured Models

In Section 3.1, we analyzed capability evaluation in stochas-
tic environments. In this regime, the objective is inherently
statistical, i.e., to estimate expected performance under each
environment. With i.i.d. samples (from each environment
or a proposal distribution), one can obtain PAC-style guar-
antees without assumptions on the model class.
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We now shift to a different and equally important paradigm
in which the evaluation goal is combinatorial rather than
stochastic. Here the target is not an expected risk, but a
stronger form of certification, such as a worst-case guaran-
tee, exact correctness on an entire task family, or a promise
that the model makes at most a bounded number of errors.
This regime arises naturally when a capability is intended
to be “algorithmic” or “rule-based”—for instance, when
one wants to certify whether an LLM can reliably perform
arithmetic, obey a formal specification, or follow a syntactic
constraint across all relevant inputs. In such settings, eval-
uation cannot rely on averaging under a fixed distribution:
failures may be rare yet consequential, and a small number
of adversarially placed errors can invalidate a capability
claim.

A fundamental difference from the stochastic regime is
that meaningful certification is impossible without struc-
tural restrictions on the model class. Indeed, for a com-
pletely unrestricted model, any finite evaluation transcript
can be matched by another model that behaves identically
on the queried tasks but differs arbitrarily on unqueried
ones. We illustrate the phenomenon on Boolean circuits
with bounded size. Let Fn,s be the class of Boolean func-
tions f : {0, 1}n → {0, 1} computable by circuits of size at
most s. The task family is T = {(x, 0) : x ∈ {0, 1}n} with
indicator loss. We consider the counting capability

C(f) :=
∣∣{x ∈ {0, 1}n : f(x) = 1}

∣∣.
An evaluator is given black-box query access to f and out-
puts an estimate Ĉ. If we interpret f(x) = 1 as indicating
a failure on input x (i.e., the model produces an incorrect
answer on that task instance), then C(f) measures the total
number of failing inputs. We show that, unlike the stochastic
setting where guarantees are largely model-class-agnostic,
this combinatorial objective admits no such generalization:
even for f ∈ Fn,s, any black-box protocol using subexpo-
nentially many queries (more than the circuit size s), can be
forced to incur additive error M(s).
Theorem 3.10. There exists a constant c > 0 such that for
all sufficiently large n and all s ≥ cn, the following holds.
For any functions T,M : N → N satisfying T (n)(2M(s) +
1) ≤ 2n−2, no (possibly randomized, adaptive) evaluator
making at most T (n) queries can, with success probability
at least 2/3, output an estimate Ĉ satisfying∣∣Ĉ − C(f)

∣∣ ≤M(s) for all f ∈ Fn,s.

Proof. We apply Yao’s minimax principle, so it suffices to
exhibit a distribution over functions in Fn,s under which
every deterministic evaluator with at most T (n) queries fails
with probability at least 1/3.

Identify {0, 1}n with the integers [2n] := {0, 1, . . . , 2n−1}
via the standard binary encoding. Let W := 2M(s) + 1.

Consider the following random choice of f : with proba-
bility 1/2 set f = f0 ≡ 0; with probability 1/2 choose a
uniformly random interval I = {a, a+1, . . . , a+W−1} ⊆
[2n] 3 (where a is uniform in {0, . . . , 2n −W}) and set

f = fI , fI(x) = 1{x ∈ I}.

Then C(f0) = 0 and C(fI) = |I| =W = 2M(s) + 1.

Fix an arbitrary deterministic evaluator making at most T (n)
queries, and let Q0 ⊆ [2n] be the (deterministic) set of
queried inputs under f0. The probability (over the random
interval I) that Q0 intersects I is at most

Pr(I ∩Q0 ̸= ∅) ≤ |Q0| · |I|
2n

≤ T (n)W

2n
.

By the assumed condition T (n)(2M(s) + 1) ≤ 2n−2, we
have T (n)W/2n ≤ 1/4. Hence, with probability at least
3/4, the evaluator never queries a point in I; thus, the ob-
served transcript is identically 0 under both f0 and fI .

Condition on the event that the transcript is all zeros, and
let the evaluator output some value a. If a ≤ M(s) then
|Ĉ − C(fI)| = |a − (2M(s) + 1)| > M(s), while if a >
M(s) then |Ĉ − C(f0)| = |a − 0| > M(s). Thus, on
the all-zero transcript event, the evaluator incurs error >
M(s) on at least one of {f0, fI}. Under the above 1/2–
1/2 mixture, this yields conditional failure probability at
least 1/2. Therefore the overall failure probability is at least
(3/4) · (1/2) = 3/8 > 1/3.

It remains to verify realizability. The function fI(x) =
1{a ≤ x ≤ a+W − 1} can be implemented as the AND
of two comparators (“x ≥ a” and “x ≤ a+W − 1”) with
hardwired constants. Standard comparator circuits have size
O(n), so for s ≥ cn (with c sufficiently large) we have
fI ∈ Fn,s. By Yao’s principle, the same lower bound holds
for randomized evaluators.

Theorem 3.10 identifies a fundamental information-theoretic
limitation of black-box evaluation in the combinatorial
regime. It shows that even when the evaluator is allowed
to make far more oracle queries than the circuit size s, and
indeed more than the model’s description length, no black-
box procedure can reliably estimate the capability measure
C(f) to within additive error M(s) for all f ∈ Fn,s, where
the toleranceM(s) can scale with the circuit size, as long as
the total number of queries satisfies T (n) = o(2n/M(s)).
This contrasts sharply with stochastic settings, where sam-
ple complexity is often model-class independent. We expect
analogous black-box impossibility phenomena to extend to
neural networks and transformer-based models as well.

3The intervals ensure fI admits a simple O(n)-size realization;
an arbitrary set I need not admit such a small circuit.
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A. Conclusion and Discussion
This paper frames evaluation as certification by inference. Our results show that meaningful generalization from finite
evaluation is possible only when there is usable structure linking the task family and the model under evaluation. In the
stochastic multi-environment setting, we show that when environments overlap, the sample complexity of certifying the
full risk profile is governed by an intrinsic overlap parameter (the χ2 radius) rather than by the number of environments.
In contrast, our combinatorial results show that without explicit structure linking tested and untested queries, black-box
evaluation cannot reliably distinguish perfect performance from performance with many errors. Together, these results
demonstrate a sharp boundary between what finite evaluation can and cannot certify.

There are several open problems left unresolved. For instance, our χ2-radius lower bound relies on a likelihood-ratio
condition imposed on the evaluation protocol itself. It would be interesting to investigate whether this condition can be
removed, and more generally whether an alternative complexity measure, such as a “truncated” version of the χ2-radius,
could close the remaining gap between upper and lower bounds. For the combinatorial setting, our results are primarily
negative. That said, these results do not rule out the existence of nontrivial positive guarantees for specific structured model
classes. For example, consider the class of parity functions

F := { f(x) =
⊕
i∈S

xi : S ⊆ [n] }.

For this family, simple random sampling suffices to distinguish between perfect performance (e.g., C(f) = 0) and nontrivial
error, since any incorrect parity function disagrees with the true function on exactly half of the inputs and can therefore be
detected using i.i.d. samples from the uniform distribution on {0, 1}n. It is therefore an interesting direction to investigate
finer-grained structural properties of the model class and the task family that enable combinatorial certifications.

Our findings also point toward directions for making practical evaluation claims more precise. In particular, our theory
suggests that certification guarantees should clearly state the assumptions on the task family under which they are intended
to hold, since such assumptions play a central role in enabling nontrivial inference. More broadly, it can be useful to view
evaluation as a sequential decision problem, in which queries are chosen to probe the target capability, rather than relying
solely on a single static test suite.

B. A Sequential Lower Bound for Bernoulli Mean Testing (Optional Stopping)
This appendix states and proves a standard sequential (optional-stopping) lower bound used in Proposition 3.1. The key
point is that the stopping time may depend on the observed samples, yet distinguishing two Bernoulli means still requires
Ω(1/ε2) expected samples. Closely related inequalities appear, for example, in (Kaufmann et al., 2016); we include a
self-contained proof here for completeness and readability.

B.1. Setup

Let P and Q be two distributions on a measurable space (X ,A). Let X1, X2, . . . be i.i.d. samples drawn either from P
or from Q. Let Ft = σ(X1, . . . , Xt) be the natural filtration. A (possibly randomized) sequential test consists of: (i) a
stopping time τ with respect to (Ft)t≥1, (ii) a terminal decision ψ ∈ {0, 1} that is Fτ -measurable. We interpret ψ = 0 as
deciding P and ψ = 1 as deciding Q.

If the procedure uses internal randomness U (independent of the samples), we enlarge the filtration to Gt = σ(U,X1, . . . , Xt)
and require τ to be a stopping time w.r.t. (Gt) and ψ to be Gτ -measurable. All statements below hold conditional on U , and
hence hold unconditionally; for readability we present the proof without U .

B.2. Main inequality

Lemma B.1 (Sequential KL lower bound). Let (τ, ψ) be any sequential test such that EP [τ ] <∞ and

P (ψ = 1) ≤ δ, Q(ψ = 0) ≤ δ,

for some δ ∈ (0, 1/2). Then
EP [τ ] ·KL(P∥Q) ≥ kl(1− δ, δ),
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where KL(·∥·) is the Kullback–Leibler divergence and kl(a, b) = a log a
b + (1− a) log 1−a

1−b is the binary relative entropy.
By symmetry, also EQ[τ ] ·KL(Q∥P ) ≥ kl(1− δ, δ).

Proof. Define the per-sample log-likelihood ratio

Yt := log
dP

dQ
(Xt),

interpreting Yt = −∞ on sets where dP/dQ = 0 (the statement is trivial otherwise). Let

Lt :=

t∑
s=1

Ys, t ≥ 1,

and define the stopped transcript
T := (τ,X1, . . . , Xτ ),

which takes values in the disjoint union
⋃
t≥1{t} × X t.

Step 1: Likelihood ratio of the stopped transcript. For each t ≥ 1 and each (x1, . . . , xt) ∈ X t, write

At(x1, . . . , xt) := 1{τ(x1, . . . , xt) = t}.

Since τ is a stopping time, At is X t-measurable. Moreover, At is the same deterministic function of the observed data under
both P and Q. Therefore,

P (τ = t,X1 ∈ dx1, . . . , Xt ∈ dxt) = At(x1, . . . , xt)

t∏
s=1

P (dxs),

and similarly with Q in place of P . Taking the Radon–Nikodym derivative on {t} × X t yields, pointwise on the event
{τ = t},

dPT

dQT
(t, x1, . . . , xt) =

t∏
s=1

dP

dQ
(xs).

Equivalently, the log-likelihood ratio satisfies

log
dPT

dQT
(T) = Lτ . (3)

Importantly, this identity does not require P (τ = t) = Q(τ = t); the stopping indicator cancels pathwise in the likelihood
ratio because τ is a deterministic function of the observed data.

Step 2: KL of the stopped transcript. Taking expectation of (3) under P gives

KL(PT∥QT) = EP [Lτ ].

Step 3: Wald’s identity (optional stopping for sums). Under P , the Yt are i.i.d. with mean EP [Y1] = KL(P∥Q). Since
EP [τ ] <∞ and EP [|Y1|] <∞ for Bernoulli P,Q (and more generally when KL(P∥Q) <∞), Wald’s identity applies:

EP [Lτ ] = EP

[
τ∑
s=1

Ys

]
= EP [τ ] · EP [Y1] = EP [τ ] ·KL(P∥Q).

Hence,
KL(PT∥QT) = EP [τ ] ·KL(P∥Q).
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Step 4: Data processing to the terminal decision. Since ψ is a measurable function of the transcript T, the data processing
inequality yields

KL(PT∥QT) ≥ KL(Pψ∥Qψ),

where Pψ and Qψ denote the induced Bernoulli laws of ψ under P and Q. Let a := P (ψ = 0) ≥ 1− δ and b := Q(ψ =
0) ≤ δ. Then

KL(Pψ∥Qψ) = kl(a, b) ≥ kl(1− δ, δ),

since kl(a, b) is increasing as a moves away from b and the minimum over the constraints a ≥ 1− δ, b ≤ δ is attained at
a = 1− δ, b = δ.

Combining the above displays gives

EP [τ ] ·KL(P∥Q) = KL(PT∥QT) ≥ kl(1− δ, δ),

which proves the claim. The bound under Q is identical with (P,Q) swapped.

B.3. Specialization to Bernoulli means

Corollary B.2 (Bernoulli separation implies Ω(1/ε2) expected samples). Fix ε ∈ (0, 1/8) and let P = Bern( 12 + 2ε) and
Q = Bern(12 − 2ε). Any sequential test with error probabilities at most δ < 1/2 satisfies

max{EP [τ ],EQ[τ ]} = Ω(1/ε2),

where the hidden constant depends only on δ.

Proof. By Lemma B.1 it suffices to upper bound KL(P∥Q) by Cε2. Let P = Bern(p) and Q = Bern(q) with p = 1
2 + 2ε

and q = 1
2 − 2ε. For Bernoulli distributions one has the standard inequality

KL(Bern(p) ∥Bern(q)) ≤ (p− q)2

q(1− q)
for all p, q ∈ (0, 1).

Since q ∈ [1/4, 3/4] for ε ≤ 1/8, we have q(1− q) ≥ 3/16, and therefore

KL(P∥Q) ≤ (4ε)2

3/16
=

256

3
ε2.

Plugging this into Lemma B.1 yields EP [τ ] ≥ c(δ)/ε2, and similarly EQ[τ ] ≥ c(δ)/ε2.

C. A χ2-Radius Lower Bound for Fixed-Proposal Evaluation
This appendix proves Theorem 3.5. The proof is based on a two-point (Le Cam) argument tailored to the fixed-proposal
evaluation setting, in which the evaluator draws i.i.d. samples from a proposal distribution q and observes only the induced
losses. We construct two stochastic models whose risks under a carefully chosen environment differ by 2ε, yet whose
induced observation distributions under q have small KL divergence unless n = Ω(V (P)/ε2).

C.1. Preliminaries

Fix a measurable space (Z,A) and a proposal distribution q on Z . Assume p ≪ q and define the likelihood ratio
w(z) := dp

dq (z). We will use Pinsker’s inequality between total variation and KL (Polyanskiy & Wu, 2022, Theorem 7.10),

TV(P,Q) ≤
√

1
2KL(P∥Q). (4)

We also use the following elementary reduction from estimation to testing.

Lemma C.1 (From estimation to testing). Fix i ∈ [m] and consider two models f+, f− such that µi(f+)− µi(f
−) > 2ε.

If an evaluation protocol outputs an estimate µ̂i satisfying

Pr
f

(
|µ̂i − µi(f)| ≤ ε

)
≥ 1− δ for all f ∈ {f+, f−},

12
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where Prf denotes probability over the protocol transcript when querying f , then there exists a test ψ (measurable w.r.t. the
transcript) taking values in {+,−} such that

Pr
f+

(ψ = −) ≤ δ and Pr
f−

(ψ = +) ≤ δ.

Proof. Define ψ by thresholding µ̂i at the midpoint t := 1
2 (µi(f

+) + µi(f
−)): output + if µ̂i ≥ t and output − otherwise.

If f = f+ and |µ̂i − µi(f
+)| ≤ ε, then µ̂i ≥ µi(f

+) − ε = 1
2 (µi(f

+) + µi(f
−)) + 1

2 (µi(f
+) − µi(f

−) − 2ϵ) > t, so
ψ = +. Similarly, if f = f− and |µ̂i − µi(f

−)| ≤ ε, then µ̂i ≤ µi(f
−) + ε < t, so ψ = −. Hence each error event is

contained in the corresponding estimation failure event, implying the claimed bounds.

C.2. Hard instance for a fixed proposal q

Let P = {p1, . . . , pm} be given and fix a proposal q such that pi ≪ q for all i. Define for each i the second-moment
quantity

Si(q) := Ez∼q
[(pi(z)

q(z)

)2]
= 1 + χ2(pi∥q).

Let i⋆ ∈ argmaxi∈[m] Si(q) and write w(z) := pi⋆ (z)
q(z) and S := Si⋆(q) = Eq[w2]. Note that S = 1 + χ2(pi⋆∥q) ≥

1 + V (P) since maxi χ
2(pi∥q) ≥ V (P) for every q.

We now construct two stochastic models f+, f− whose induced losses under a query point z are Bernoulli random variables
with opposite biases. Fix ε ∈ (0, 1/8) and define

h(z) :=
w(z)√
S
, α :=

ε√
S
.

Assume the proposal q satisfies the pointwise bound (as in Theorem 3.5)

ess sup
z

w(z) ≤ cS

ε
for a sufficiently small universal constant c ≤ 1

8 .

Then for all z, |αh(z)| = εw(z)/S ≤ c ≤ 1/8.4

Define two stochastic models f+ and f− by specifying their induced loss distributions: for each query point z, the observed
loss is drawn independently as

ℓf±(z) ∼ Bern
(
1
2 ± αh(z)

)
.

Risk separation under pi⋆ . By construction,

ℓ̄f+(z)− ℓ̄f−(z) = 2αh(z).

Therefore,

µi⋆(f
+)− µi⋆(f

−) = Ez∼pi⋆
[
ℓ̄f+(z)− ℓ̄f−(z)

]
= 2αEz∼pi⋆ [h(z)]
= 2αEz∼q[w(z)h(z)]

= 2α · Eq[w
2]√
S

= 2ε.

C.3. KL bound under q

Let P+ and P− denote the distributions of the evaluator’s transcript when the underlying model is f+ or f−, respectively.
Since the protocol draws Zt ∼ q i.i.d. and the losses are conditionally independent given Zt, the KL divergence satisfies

KL(P+∥P−) = nEz∼q
[
KL
(
Bern( 12 + αh(z))

∥∥Bern( 12 − αh(z))
)]
.

4This property is crucial and ensures that the induced loss ℓf±(z, u) follows a well-defined Bernoulli distribution.

13
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For |t| ≤ 1/8, a standard bound for Bernoulli KL (c.f. proof of Corollary B.2) gives

KL
(
Bern( 12 + t)

∥∥Bern( 12 − t)
)

≤ 32t2. (5)

Applying (5) with t = αh(z) and using Eq[h(z)2] = 1 yields

KL(P+∥P−) ≤ 32nα2Eq[h2] = 32n · ε
2

S
.

Hence, if n ≤ S
256 ε2 , then KL(P+∥P−) ≤ 1/8 and by (4)

TV(P+,P−) ≤
√

1
2 · 1

8 = 1
4 .

It follows that any test ψ based on the transcript must have error at least 3/8 under one of the two hypotheses:

inf
ψ

max{Pr
+
(ψ = −),Pr

−
(ψ = +)} ≥ 1

2

(
1− TV(P+,P−)

)
≥ 1

2
(1− 1

4 ) =
3

8
.

In particular, no test can achieve error ≤ δ for any fixed δ < 3/8.

C.4. Concluding the lower bound

Assume an evaluation protocol is (ε, δ)-generalizable for the full risk profile, with δ < 3/8, when run with i.i.d. samples
from q. Applying this guarantee to environment i⋆ and models f+, f−, Lemma C.1 would yield a test with error at most
δ < 3/8, contradicting the preceding KL/TV bound whenever n ≤ S

256 ε2 . Therefore any such protocol must satisfy

n ≥ Ω

(
S

ε2

)
= Ω

(
1 + χ2(pi⋆∥q)

ε2

)
.

Finally, since i⋆ maximizes χ2(pi∥q) and maxi χ
2(pi∥q) ≥ V (P) for every q, we obtain

n ≥ Ω

(
1 + V (P)

ε2

)
,

which implies the stated Ω(V (P)/ε2) lower bound up to universal constants.

D. Proof of Proposition 3.7
Proof. We prove a reduction from uniform risk profile estimation to identifying one of m hypotheses, and then lower bound
the number of adaptive queries needed for identification via mutual information and Fano.

Step 1: A half-set family with two combinatorial properties. FixD := ⌈256 logm⌉ (soD is even form large; otherwise
increase by 1). Let Z = [D] and let q be the uniform distribution on [D]. We will define m subsets A1, . . . , Am ⊂ [D] each
of size D/2 satisfying:

(C1) (pairwise overlap control) for all j ̸= k,

3D

16
≤ |Aj ∩Ak| ≤ 5D

16
;

(C2) (column balance) for all z ∈ [D],
m

3
≤
∣∣{j ∈ [m] : z ∈ Aj}

∣∣ ≤ 2m

3
.

Such a family exists by the probabilistic method: choose A1, . . . , Am i.i.d. uniformly among subsets of [D] of size D/2.
Condition (C2) holds with probability at least 1 − 2De−m/72 by a Chernoff bound and a union bound over z ∈ [D];

14
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condition (C1) holds with probability at least 1 − 2
(
m
2

)
e−D/64 by Hoeffding’s inequality for hypergeometric random

variables and a union bound over pairs (j, k) (Wu et al., 2023, Theorem D.1). With our choice D = Θ(logm), both failure
probabilities are < 1/2 for all m large enough, hence there exists a deterministic realization satisfying (C1)–(C2). Fix such
a realization.

For each j ∈ [m], define the environment pj as the uniform distribution on Aj :

pj(z) :=
2

D
1{z ∈ Aj}.

Then pj ≪ q and pj(z)
q(z) ∈ {0, 2} for all z, hence

χ2(pj∥q) =
D∑
z=1

pj(z)
2

q(z)
− 1 =

∑
z∈Aj

(2/D)2

1/D
− 1 =

D

2
· 4

D
− 1 = 1.

Therefore maxj χ
2(pj∥q) ≤ 1, implying V (P) ≤ 1 for P = {p1, . . . , pm}.

Step 2: A hard m-ary family of models. Fix ε ∈ (0, 1/8) and define, for each j ∈ [m], a (randomized) model f (j) by
specifying that on query z ∈ [D] it outputs a Bernoulli loss

L ∼ Bern
(

1
2 + ε

2vj(z)
)
, vj(z) := 21{z ∈ Aj} − 1 ∈ {+1,−1}.

Let µk(f (j)) := Ez∼pk [E(L | z)] denote the risk under environment pk. Since pk is uniform on Ak and |Ak| = D/2,

µk(f
(j)) = Ez∼pk

[
1
2 + ε

2vj(z)
]
= 1

2 + ε
2 Ez∼pk [vj(z)]

= 1
2 + ε

2

(
2|Aj ∩Ak|

|Ak|
− 1

)
= 1

2 + ε
2

(
4|Aj ∩Ak|

D
− 1

)
.

If k = j, then |Aj ∩ Aj | = D/2 so µj(f (j)) = 1
2 + ε

2 . If k ̸= j, condition (C1) implies |Aj ∩ Ak| ∈ [3D/16, 5D/16],
hence

Ez∼pk [vj(z)] ∈
[
− 1

4
,
1

4

]
⇒ µk(f

(j)) ∈
[
1
2 − ε

8 ,
1
2 + ε

8

]
.

In particular, under model f (j), environment j is separated from all others by a gap of at least 3ε/8.

Therefore, if a protocol outputs estimates µ̂1, . . . , µ̂m satisfying maxk∈[m] |µ̂k − µk(f
(j))| ≤ ε/16, then

µ̂j ≥ 1
2 + ε

2 − ε
16 = 1

2 + 7ε
16 , max

k ̸=j
µ̂k ≤ 1

2 + ε
8 + ε

16 = 1
2 + 3ε

16 ,

so argmaxk µ̂k = j. Hence (ε/16, δ)-generalizable estimation of the full profile implies identification of j with error
probability at most δ.

Step 3: Information gained per adaptive query is O(ε2). Let J be uniform on [m], and suppose the protocol interacts
with the unknown model f (J). At round t, the protocol chooses a query Zt ∈ [D] as a (possibly randomized) function of the
past transcript Ht−1 = (Z1, L1, . . . , Zt−1, Lt−1) and then observes

Lt ∼ Bern
(

1
2 + ε

2vJ(Zt)
)
,

independently of the past given (J, Zt).

We bound I(J ;Hn). By the chain rule of mutual information (Polyanskiy & Wu, 2022, Theorem 3.7),

I(J ;Hn) =

n∑
t=1

I
(
J ; (Zt, Lt) | Ht−1

)
.
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Given Ht−1, the query Zt is determined by the protocol (and its internal randomness), so I(J ;Zt | Ht−1) = 0 and thus
(using chain rule again):

I
(
J ; (Zt, Lt) | Ht−1

)
= I(J ;Lt | Zt,Ht−1).

Moreover, conditioned on Zt = z, the distribution of Lt depends on J only through the single bit B := vJ(z) ∈ {+1,−1}.
Hence, for every history h, Lt ⊥⊥ J | (B,Zt = z,Ht−1 = h) and B is a deterministic function of J . Therefore,

I(J ;Lt | Zt = z,Ht−1 = h) = I(B;Lt | Zt = z,Ht−1 = h).

Let πz,h := Pr(B = +1 | Zt = z,Ht−1 = h). Then Lt | (B = +1, Zt = z,Ht−1 = h) ∼ P+ and Lt | (B =
−1, Zt = z,Ht−1 = h) ∼ P−, where P+ = Bern(1/2 + ε/2) and P− = Bern(1/2 − ε/2), and the marginal law is
P̄z,h := πz,hP+ + (1− πz,h)P−. Therefore, by Polyanskiy & Wu (2022, Theorem 3.2(a)),

I(B;Lt | Zt = z,Ht−1 = h) = πz,hKL(P+∥P̄z,h) + (1− πz,h)KL(P−∥P̄z,h).

Since ε ≤ 1/8, P̄z,h has mean in [3/8, 5/8] for all πz,h ∈ [0, 1], and hence q(1− q) ≥ 3/16 for q equal to this mean. Using
kl(p∥q) ≤ (p− q)2/(q(1− q)), we obtain the uniform bound

KL(P±∥P̄z,h) ≤
(ε/2)2

3/16
=

4

3
ε2,

and consequently

I(J ;Lt | Zt = z,Ht−1 = h) ≤ I(B;Lt | Zt = z,Ht−1 = h) ≤ 4

3
ε2

for all z and h. Averaging over (Zt,Ht−1) yields I(J ;Lt | Zt,Ht−1) ≤ 4
3ε

2 for every t, and therefore

I(J ;Hn) =

n∑
t=1

I
(
J ; (Zt, Lt) | Ht−1

)
=

n∑
t=1

I(J ;Lt | Zt,Ht−1) ≤
4

3
nε2.

Step 4: Fano’s inequality. Let Ĵ be any estimator of J based on Hn. Fano’s inequality gives

Pr(Ĵ ̸= J) ≥ 1− I(J ;Hn) + log 2

logm
≥ 1− 4nε2 + log 2

logm
.

If n ≤ c (logm)/ε2 for a sufficiently small universal constant c > 0, then Pr(Ĵ ̸= J) ≥ 1/3.

By Step 2, any (ε/16, δ)-generalizable full-profile estimator with δ ≤ 1/6 would yield an identifier with error at most
1/6, contradicting the above bound. Rescaling ε by a constant completes the proof of n = Ω((logm)/ε2) for (ε, δ)-
generalizability (absorbing constant factors into Ω(·)).

E. Adaptive Querying Lower Bound via a Null-Reference and Reverse KL
This appendix proves an adaptive analogue of Theorem 3.5 for fully adaptive evaluation protocols. The key idea is to
compare each alternative model to a null reference model f0 (rather than comparing the two alternatives directly) and then
use a triangle inequality in total variation. Crucially, we bound the reverse divergences KL(P0∥P±), so all expectations are
taken under the reference execution, which avoids having to control hypothesis-dependent query drift.

E.1. Setup

Let P = {p1, . . . , pm} be distributions on a common domain Z . An evaluation protocol E proceeds for n rounds. At round
t, given the past transcript Ht−1 = {(Zs, Ls)}t−1

s=1 and internal randomness, the protocol chooses a query point Zt ∈ Z
(possibly at random), then observes a loss Lt = ℓf (Zt) ∈ {0, 1}. The protocol may be fully adaptive, i.e. Zt may depend
on the entire past transcript (including past losses).

We consider stochastic models f defined by specifying the conditional distribution of the observed loss given the queried
point: for each z ∈ Z , L | (Z = z) ∼ Bern(ℓ̄f (z)) with ℓ̄f (z) ∈ [0, 1], and losses are conditionally independent across
rounds given the query points.
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E.2. Null reference proposal

Define the null model f0 by ℓ̄f0(z) ≡ 1/2 for all z, so that under f0 the observed losses are i.i.d. Bern(1/2) and independent
of the queried points. Let P0 denote the distribution of the full transcript under f0. For each t, let q0t (· | Ht−1) be the
(random) conditional distribution of Zt given the past transcript under P0. Define the averaged reference proposal

q0(·) :=
1

n

n∑
t=1

EP0

[
q0t (· | Ht−1)

]
. (6)

For any measurable g : Z → R,
1

n

n∑
t=1

EP0
[g(Zt)] = Ez∼q0 [g(z)]. (7)

Define the second-moment parameter

Sq0(P) := max
i∈[m]

Ez∼q0
[(pi(z)
q0(z)

)2]
= 1 + max

i∈[m]
χ2(pi∥q0).

Assume pi ≪ q0 for all i, and that the likelihood-ratio bound holds:

max
i∈[m]

ess sup
z∈Z

pi(z)

q0(z)
≤ c Sq0(P)

ε
(8)

for a sufficiently small universal constant c > 0.

E.3. Estimation to testing and TV–KL

We use the same estimation-to-testing reduction as Lemma C.1. We also use Pinsker’s inequality:

TV(P,Q) ≤
√

1
2KL(P∥Q). (9)

E.4. Hard instance

Let i⋆ ∈ argmaxi Eq0 [(pi/q0)2] and define w(z) := pi⋆ (z)
q0(z)

and S := Eq0 [w2] = Sq0(P). Let

h(z) :=
w(z)√
S
, α :=

ε√
S
.

By (8), for all z we have |αh(z)| = εw(z)/S ≤ c ≤ 1/8 (for small enough c), so the following Bernoulli models are
well-defined.

Define two stochastic models f+ and f− by

ℓ̄f±(z) := 1
2 ± αh(z), Lt | (Zt = z) ∼ Bern(ℓ̄f±(z)),

with losses conditionally independent across rounds given the queries. Let P+ and P− denote the induced transcript
distributions under f+ and f−, respectively.

Risk separation. By construction, ℓ̄f+(z)− ℓ̄f−(z) = 2αh(z), hence

µi⋆(f
+)− µi⋆(f

−) = Ez∼pi⋆ [ℓ̄f+(z)− ℓ̄f−(z)]

= 2αEz∼pi⋆ [h(z)] = 2αEz∼q0 [w(z)h(z)]

= 2α · Eq0 [w
2]√

S
= 2ε.

17



Generalizable Capability Evaluation

E.5. Reverse-KL bounds to the null

We bound KL(P0∥P+) (and similarly for P−). By the chain rule for KL (Polyanskiy & Wu, 2022, Theorem 2.16),

KL(P0∥P+) =

n∑
t=1

EP0

[
KL
(
L0(Lt | Ht−1)

∥∥ L+(Lt | Ht−1)
)]
, (10)

where L0(Lt | Ht−1) (resp. L+(Lt | Ht−1)) denotes the conditional distribution of the observation Lt at round t, given
the past history Ht−1, under hypothesis 0 (resp. +). Note that, although the transcript includes both the query Zt and the
observation Lt, the query-selection rule is identical under P0 and P+; consequently, the KL contributions associated with
Zt cancel in the chain rule, leaving only the conditional divergence between the distributions of Lt.

Under P0, conditional on Ht−1 the protocol selects Zt according to some (random) distribution, but regardless of Zt we
have L0(Lt | Ht−1) = Bern(1/2). Under P+ we have L+(Lt | Ht−1, Zt) = Bern(1/2 + αh(Zt)). Therefore

KL
(
L0(Lt | Ht−1)

∥∥ L+(Lt | Ht−1)
)
= EP0

[
KL
(
Bern( 12 )

∥∥ Bern( 12 + αh(Zt))
) ∣∣∣ Ht−1

]
.

For |u| ≤ 1/8, standard Bernoulli KL bound gives KL(Bern( 12 )∥Bern(
1
2 + u)) ≤ 16u2. Applying this with u := αh(Zt)

(which satisfies |u| ≤ 1/8 by construction) and substituting into (10) yields

KL(P0∥P+) ≤ 16α2
n∑
t=1

EP0
[h(Zt)

2]. (11)

Applying (7) with g = h2 gives

1

n

n∑
t=1

EP0
[h(Zt)

2] = Ez∼q0 [h(z)2] =
1

S
Eq0 [w2] = 1,

so
∑n
t=1 EP0

[h(Zt)
2] = n. Hence

KL(P0∥P+) ≤ 16nα2 = 16n
ε2

S
. (12)

The same argument gives KL(P0∥P−) ≤ 16n ε2/S.

E.6. From reverse KL to indistinguishability

By Pinsker (9),

TV(P0,P±) ≤
√

1
2 KL(P0∥P±) ≤

√
8n

ε2

S
.

By the triangle inequality in total variation,

TV(P+,P−) ≤ TV(P+,P0) + TV(P−,P0) ≤ 2

√
8n

ε2

S
.

In particular, if n ≤ S/(512 ε2) then TV(P+,P−) ≤ 1/4, and therefore any test ψ based on the transcript must incur error
at least 3/8 under one of the two hypotheses:

inf
ψ

max{Pr
+
(ψ = −),Pr

−
(ψ = +)} ≥ 1

2

(
1− TV(P+,P−)

)
≥ 3

8 .

E.7. Concluding the adaptive lower bound

Assume an evaluation protocol is (ε, δ)-generalizable with δ < 3/8. Applying this guarantee to environment i⋆ and models
f+, f−, Lemma C.1 yields a test with error at most δ, contradicting the above testing lower bound whenever n ≤ S/(512 ε2).
Therefore any such protocol must satisfy

n = Ω

(
S

ε2

)
= Ω

(
Sq0(P)

ε2

)
.

Since Sq0(P) ≥ 1 + V (P), this also implies n = Ω(V (P)/ε2) up to universal constants.
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