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ABSTRACT
Online learning is a foundational paradigm underlying ap-
plications from recommendation systems to the continual
learning of modern AI models. Yet much of its theory centers
on either fully adversarial or purely stochastic settings. How-
ever, real-world environments typically fall between these
extremes, making classical models inadequate for describ-
ing practical behavior. This monograph develops a unified
perspective for analyzing online learning under more nu-
anced and realistic environments. We approach the problem
through the lens of universality from information theory and
extend tools such as the Shtarkov sum, covering numbers,
and packing arguments to the online setting, revealing deeper
structural connections between these two fields. Building on
this viewpoint, we characterize minimax regret for logarith-
mic and Lipschitz losses, analyze expected regret under i.i.d.
and more general stochastic processes, and study hybrid ad-
versarial–stochastic scenarios. We further develop construc-
tive algorithms that achieve near-optimal regret guarantees,
yielding a coherent and fine-grained information-theoretic
framework of online universal learning.
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1
Introduction

One of the central themes in information theory is the concept of uni-
versality, which refers to the design of algorithms—such as compressors,
estimators, or encoders—that perform well across a broad class of mod-
els, without prior knowledge of the specific model generating the data. A
representative example of this idea is universal source coding, initiated
by Davisson’s seminal work [1], where the goal is to design universal
compressors that achieve code lengths close to optimal for the unknown
underlying source. The difference between the achieved length and the
optimal is known as the redundancy. This fundamental concept has
inspired a rich body of research [2]–[8].

A closely related concept has been widely studied in the machine
learning (ML) community, known as online learning. In this setting,
the goal is to design a universal predictor that can make accurate
predictions for future observations without relying on any assumptions
about the data-generation process. The objective, as before, is to achieve
performance comparable to that of the best expert in a given class, with
the performance gap measured by the notion of regret. Indeed, the
concept of regret is closely related to redundancy, as discussed in the
seminal book by Cesa-Bianchi and Lugosi [9].

2
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Environment/Nature
yT := {y1, · · · , yT}

Class of sources
S = {Pi}

yT

Prob. Assignment
log 1/Q(yT )

Redundancy:
log 1/Q(yT )− inf

Pi∈S
log 1/Pi(yT )

log 1/Q(yT )

infPi∈S log 1/Pi(yT )

yT

Figure 1.1: A general universal source coding paradigm

Our current exposition is centered on the unifying principle of
universality in online learning. We view the online learning problem
through an information-theoretic lens, connecting classical ideas from
universal coding with modern notions of regret minimization. In doing
so, we build a unified theoretical framework that models a wide range of
learning settings, including adversarial, stochastic, and hybrid scenarios
within a common regret-based formalism.

1.1 Information Theory versus Online Learning

Perhaps the closest counterpart to online learning in information theory
is the problem of universal source coding (see also Figure 1.1). In this
setting, the goal is to find or learn the best (i.e., shortest) description
of a sequence generated by a source from a class of sources S. Since the
seminal paper by Davisson [1], the quality of universal compression has
been measured by various forms of minimax redundancy, defined as the
excess of the actual compression length over the optimal one, either on
average or in the worst case.

Formally, for a given source P (i.e., a probability distribution) and a
(label) sequence yT := (y1, . . . , yT ), the pointwise redundancy RT (P ; yT )
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and the average redundancy R̄T (P ) are defined as

RT (P ; yT ) = L(yT ) + log 1
P (yT ) ,

R̄T (P ) = EyT ∼P [RT (P ; yT )],

where L(yT ) is the coding length assigned to yT by a compression
algorithm, often taken to be

L(yT ) = − logQ(yT ),

for some (universal) distribution Q that approximates P . Often, we do
not know P exactly, but only that it belongs to a class of sources S.
Following [1], the average and worst-case minimax redundancies are
defined as (cf. [2], [7], [8]):

r̄T (S) = min
Q

sup
P∈S

EyT ∼P

[
− logQ(yT ) + log sup

P∈S
P (yT )

]
,

r∗
T (S) = min

Q
max
yT

[
− logQ(yT ) + log sup

P∈S
P (yT )

]
.

The central question is how these different redundancies relate for
various classes of sources S. In [2], it is proved that if the maximum
likelihood distribution belongs to the convex hull of S, then

r∗
T (S)− r̄T (S) = O(cT (S)),

where

cT (S) =
∑
yT

P (yT ) log

 sup
P∈S

P (yT )

P (yT )

 .
It is also shown that

r∗
T (S) = r̄T (S) +O(1),

provided the maximum likelihood distribution lies in the convex hull
of S—for example, when S consists of finite-memory (e.g., Markov)
sources. Furthermore, it is known (cf. [2]–[8]) that for a broad class of
sources, the redundancy grows as

m− 1
2 log T when the alphabet size m is fixed,
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and as
m− 1

2 log(T/m) when m = o(T ),

(see also [3], [5], [10]).

Environment/Nature
xT , yT

Experts H
H = {h : X → Ŷ}

(xT , yT )

Algorithm:
ŷt = ϕt(xt, yt−1)

Regret:
L(ŷT , yT )− inf

h∈H
L(h(xT ), yT )

ŷT

xT = (x1, · · · ,xT )
yT = (y1, · · · , yT )

Figure 1.2: Illustration to online learning

Online Learning. We now focus on the online learning paradigm,
illustrated in Figure 1.2, which can be formulated as a game between
nature (or the environment) and a learner (or predictor). Broadly,
the learner’s objective is to use past observations to predict the next
outcome in nature’s labeling sequence. At each time step t ∈ N, the
learner receives a d-dimensional input xt ∈ X . Based on the current and
past observations, it outputs a prediction ŷt = Φt(yt−1,xt), where Φt

denotes the learner’s strategy at round t—a function of the past labels
yt−1 = (y1, . . . , yt−1) and the current input sequence xt = (x1, . . . ,xt).
After the prediction is made, nature reveals the true label yt ∈ Y,
and the learner incurs a loss determined by a predefined loss function
ℓ : Ŷ × Y → R, where Ŷ and Y denote the prediction and label spaces,
respectively.

The central objective of online learning is to design algorithms that
minimize the regret. Formally, given a learner Φt for each t > 0, and a
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sequence of data (yt,xt)Tt=1, the pointwise regret is defined as

R(ΦT , yT ,H | xT ) =
T∑
t=1

ℓ(ŷt, yt)− inf
h∈H

T∑
t=1

ℓ(h(xt), yt),

where ŷt = Φt(yt−1,xt) is the learner’s prediction at time t, andH ⊂ ŶX

is a class of experts (or hypotheses).
Similar to the average/worst-case redundancy dichotomy in universal

source coding, there are various ways to define the notion of minimax
regret, depending on how the data are generated.

Fixed Design: This point of view studies the minimal regret for the
worst realization of the label sequence yT when the feature sequence xT
is known in advance. Let Φt, for t > 0, denote the predictor’s strategy.
Then, the fixed design minimax regret is defined as

reg∗
T (H | xT ) = inf

ΦT
sup
yT

R(ΦT , yT ,H | xT ). (1.1)

Furthermore, the fixed design maximal minimax regret is given by

reg∗
T (H) := sup

xT

inf
ΦT

sup
yT

R(ΦT , yT ,H | xT ). (1.2)

It is not hard to show that the fixed design minimax regret coincides
with the (worst-case) minimax redundancy, when the loss function ℓ is
the logarithmic loss (cf. Chapter 5).

Sequential Design: In this formulation, the optimization over regret is
performed sequentially at each time step t, without prior knowledge of
the entire feature sequence xT . The sequential minimax regret is defined
as

regT (H) := sup
x1

inf
ŷ1

sup
y1
· · · sup

xT

inf
ŷT

sup
yT

R(ŷT , yT ,H | xT ). (1.3)

In fact, the sequential minimax regret can be equivalently expressed as
(cf. Chapter 4)

regT (H) = inf
ΦT

sup
xT ,yT

R(ΦT , yT ,H | xT ).

Stochastic Design: Another important paradigm, analogous to the average-
case minimax redundancy, arises when the data are generated by a
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stochastic (but unknown) source. In this setting, Nature selects an un-
known distribution νννT over X T—that is, a random process—and samples
a sequence xT = (x1, . . . ,xT ) ∼ νννT . At each time step t ≤ T , Nature re-
veals xt to the predictor, who then makes a prediction ŷt = Φt(xt, yt−1),
potentially using the history of inputs xt = (x1, . . . ,xt) and past labels
yt−1 = (y1, . . . , yt−1). After the prediction is made, Nature reveals the
true label yt, and the predictor incurs a loss ℓ(ŷt, yt). The expected
worst-case regret is then defined as

regT (H,P) = inf
ΦT

sup
νννT ∈P

ExT ∼νννT

[
sup
yT

R(ΦT , yT ,H | xT )
]
, (1.4)

where H is a class of predictors, P is a family of distributions over X T .

In fact, the expected worst-case regret subsumes both the fixed design
and sequential minimax regret by selecting an appropriate distribution
class P. This unifying viewpoint will serve as the central theme of the
monograph. The main question we aim to address is how the complexity
and structure of both the expert class H and the distribution class P
influence the performance of online learning systems.

Outline. In Chapter 2, we summarize several useful tools that will
be used throughout the monograph. Chapter 3 introduces preliminary
results and foundational concepts in machine learning, such as Skolem-
ization, Fano’s inequality, and Le Cam’s two-point method. In Chapter 4,
we formally define both minimax regret and average regret, and present
two important technical results that recur throughout the monograph:
the Switch Lemma and the Shtarkov sum.

The next six chapters present novel contributions to online learning.
Chapter 5 begins with the analysis of minimax regret under logarithmic
loss. Chapter 6 extends the analysis to the case of Lipschitz loss functions.
Chapter 7 is devoted to the expected regret when features are generated
by an i.i.d. random process, while Chapter 8 studies the behavior
of expected minimax regret under general, unknown data-generating
processes. In Chapter 9, we shift focus to algorithm design, presenting
efficient online learning algorithms that closely approximate the optimal
minimax regret. Finally, Chapter 10 provides a detailed analysis of the
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minimax regret in the presence of label noise, where the learner only
observes corrupted labels.

1.2 Bibliographical Notes

A substantial body of literature on general machine learning has been
developed, as exemplified by the excellent textbooks [11]–[14]. Online
learning, in particular, is discussed in the seminal book by Cesa-Bianchi
and Lugosi [9]. We also refer the reader to [15], [16] for a more modern
viewpoint on the online convex optimization (OCO) framework. Our
treatment of universal online learning for general data generation pro-
cesses is largely inspired by universal source coding in the information
theory community, which can be traced back to the seminal works
of [1], [17], and [18]. Rissanen et al. [4] highlight the connection between
universal coding and universal modeling and learning. The last two
decades have witnessed a resurgence of interest in redundancy rates for
lossless coding [2], [6]–[8], [19], as well as in related work such as [5],
[20]–[23]. We shall discuss some of these references in more detail in the
following chapters. Some of them address finite alphabets, while oth-
ers—such as [5], [20]–[22]—consider unbounded alphabets or alphabets
with additional structural properties, such as monotonicity constraints.

The material presented in this exposition is primarily based on the
authors’ own works, which will be discussed in detail in subsequent
sections. In Section 4, we will also briefly discuss the works of [23]–
[26], which provide a general treatment of online learning through
the concept of sequential Rademacher complexity. We refer the reader
to these original papers for a more comprehensive exposition. The
hybrid online learning setting discussed in this monograph has recently
attracted considerable attention, notably in the smoothed adversarial
framework introduced by [27]–[29]. We also note that the learning-
augmented framework proposed in recent work [30] provides a different
perspective on the “hybrid” setting through a prediction oracle.



2
Useful Tools

In this chapter, we describe some useful results and tools that will be
used throughout this exposition. We start with Bregman divergence
and exp-convexity. We then summarize VC-dimension and the fat-
shattering number. Skolemization is a useful tool discussed in this
chapter. Following the description of minimax expressions, we recall
Fano inequality and discuss Le Cam two point methods. We conclude
this section with some large deviation inequalities.

2.1 Bregman Divergence and Exp-concavity.

Let D(Ỹ) be the set of probability distributions over some (finite) set
Ỹ of size M . A function L : D(Ỹ) × D(Ỹ) → R≥0 is referred to as a
divergence. We say a divergence L is a Bregman divergence if there exists
a strictly convex function F : D(Ỹ)→ R such that for any p, q ∈ D(Ỹ),

L(p, q) = F (p)− F (q)− (p− q)T∇F (q).

Note that both KL-divergence KL(p, q) = ∑
ỹ∈Ỹ p[ỹ] log p[ỹ]

q[ỹ] and the
L2-divergence L2(p, q) = ||p− q||22 are Bregman divergences [9, Chapter
11.2].

We now present some properties of Bregman divergence.

9
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Proposition 2.1. Let P be a random variable over D(Ỹ) (i.e., a random
variable with values in RM ) and L be a Bregman divergence. Then for
any q1, q2 ∈ D(Ỹ)

Ep∼P [L(p, q1)− L(p, q2)] = L(Ep∼P [p], q1)− L(Ep∼P [p], q2).

Proof. By definition of Bregman divergence, we have

L(p, q1)− L(p, q2) =F (q2)− F (q1)− pT(∇F (q1)−∇F (q2))
+ qT

1∇F (q1)− qT
2∇F (q2).

Note that the above expression is a linear function w.r.t. p. Therefore,
by taking expectation over p ∼ P and using linearity of expectation,
one can verify the claimed identity holds.

A function ℓ : D(Ỹ)× Ỹ → R≥0 is referred to as a loss function. For
instance, the log-loss is defined as

ℓlog(p, ỹ) = KL(eỹ, p) = − log p[ỹ],

and the Brier loss is defined as

ℓB(p, ỹ) = ∥eỹ − p∥22,

where eỹ is the probability distribution assigning mass 1 to ỹ. We say a
loss ℓ is α-exp-concave if for any ỹ ∈ Ỹ, the function p 7→ e−αℓ(p,ỹ) is
concave with respect to p for some α ∈ R≥0.

Proposition 2.2. The log-loss is 1-exp-concave and the Brier loss is
1/4-exp-concave.

Proof. The 1-exp-concavity of the log-loss can be verified directly. To
prove the 1/4-exp-concavity of the Brier loss, we use the characterization
from [16, Lemma 4.2], which states that a function f is α-exp-concave
if and only if:

α∇f(p)∇f(p)T ⪯ ∇2f(p).
Let q ∈ D(Ỹ), and define f(p) = ∥p− q∥22. Then ∇f(p) = 2(p− q) and
∇2f(p) = 2I, where I is the identity matrix. For any u ∈ RM , we have:

1
4⟨u, 2(p− q)⟩2 ≤ ∥u∥22∥p− q∥22 ≤ 2∥u∥22 = 2uTIu,
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where the first inequality follows from Cauchy–Schwarz, and the second
inequality follows from:

∥p−q∥22 =
∑
ỹ∈Ỹ

(p[ỹ]−q[ỹ])2 ≤
∑
ỹ∈Ỹ

max{p[ỹ], q[ỹ]}2 ≤
∑
ỹ∈Ỹ

p[ỹ]2+q[ỹ]2 ≤ 2,

since p, q ∈ D(Ỹ). This completes the proof.

2.2 VC and Fat-Shattering Dimensions

For completeness, we recall the definition of the VC-dimension. Let
H ⊂ {0, 1}X be a class of functions mapping a set X into {0, 1}. The
VC-dimension of H, denoted by VC(H), is defined as the largest integer
d ≥ 1 for which there exists a sequence xd = (x1, . . . ,xd) ∈ X d such that,
for every yd = (y1, . . . , yd) ∈ {0, 1}d, there exists an h ∈ H satisfying
h(xt) = yt for all t ∈ [d]. An equivalent and often more generalizable
formulation is based on the notion of shattering. We say that H shatters
xd ∈ X d if, for every subset I ⊂ [d], there exists h ∈ H such that
h(xt) = 1 for all t ∈ I and h(xt) = 0 for all t /∈ I. The VC-dimension of
H is then the largest d for which some xd is shattered by H.

The following combinatorial result characterizes the growth of finite
VC-dimension classes:

Lemma 2.1 (Sauer’s Lemma). Let H ⊂ {0, 1}X be a class of binary-
valued functions with VC-dimension d. Then, for any sequence xT =
(x1, . . . ,xT ) ∈ X T , we have:

|{(h(x1), . . . , h(xT )) : h ∈ H}| ≤
d∑
i=0

(
T

i

)
.

Proof. We proceed by induction on T and d. For T = 0 or d = 0,
the result holds trivially. Fix xT ∈ X T . For each h ∈ H, let h|T−1 =
(h(x1), . . . , h(xT−1)), and define:

A0 = {h|T−1 : h(xT ) = 0, h ∈ H},
A1 = {h|T−1 : h(xT ) = 1, h ∈ H}.

Denote H(xT ) := {(h(x1), . . . , h(xT )) : h ∈ H}, we have:

|H(xT )| = |A0|+ |A1| = |A0 ∪A1|+ |A0 ∩A1|.
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Note that A0 ∪ A1 is the set of all labelings of the first T−1 inputs
realized by H, so VC(A0 ∪ A1) ≤ d. Moreover, A0 ∩ A1 corresponds
to functions in H that agree on the first T−1 inputs and differ only
on xT . If A0 ∩ A1 were to shatter a set of size d among the first T−1
inputs, then H would shatter d+ 1 points (including xT ), contradicting
VC(H) ≤ d. Hence, VC(A0 ∩A1) ≤ d− 1. By the inductive hypothesis,
we conclude

|H(xT )| ≤
d∑
i=0

(
T − 1
i

)
+
d−1∑
i=0

(
T − 1
i

)
=

d∑
i=0

(
T

i

)
,

where the final equality follows by the identity
(T
i

)
=
(T−1

i

)
+
(T−1
i−1
)
.

The definition of the VC-dimension can be generalized to real-valued
functions as well. This leads to the notion of the fat-shattering dimension,
which can be viewed as a scale-sensitive version of the VC-dimension.
For any class H ⊂ [0, 1]X , we say that H α-fat shatters xd ∈ X d if there
exists a vector sd ∈ [0, 1]d such that for every subset I ⊂ [d], there exists
a function h ∈ H satisfying, for all t ∈ [d]:

• If t ∈ I, then h(xt) ≥ st + α; and

• If t /∈ I, then h(xt) < st − α.

The fat-shattering dimension of H at scale α is defined as the largest
integer d := d(α) such that there exists xd ∈ X d that is α-fat shattered
by H (see Figure 2.1). The special case of the fat-shattering dimension
with α = 0 is also referred to as the pseudo-dimension. Observe that the
0-fat-shattering dimension, with si = 1/2, reduces to the VC-dimension
for binary-valued functions.

2.3 Minimax Inequalities and Skolemization

In this exposition, we often deal with expressions of the following form
infx supy f(x, y) for some function f(x, y). On many occasions we need
to know its relation to supy infx f(x, y). So let us deal first with the so
called minimax inequality which claims that

inf
x∈X

sup
y∈Y

f(x, y) ≥ sup
y∈Y

inf
x∈X

f(x, y) (2.1)
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Figure 2.1: Illustration of the fat-shattering dimension

for any compact X and Y . Indeed, observe that for every x ∈ X and
y ∈ Y we have

sup
y′∈Y

f(x, y′) ≥ f(x, y).

Taking inf over X we arrive at

inf
x∈X

sup
y′∈Y

f(x, y′) ≥ inf
x∈X

f(x, y)

which holds for all y ∈ Y , thus sup over Y can safely be appended
giving

inf
x∈X

sup
y′∈Y

f(x, y′) ≥ sup
y∈Y

inf
x∈X

f(x, y)

proving (2.1).
We also notice that for any functions f and q

sup (f(x) + g(x)) ≤ sup
x
f(x) + sup

x
g(x). (2.2)

Finally, we deal with an important tool known as skolemization which
is usually used in logic but we adapt it to our context. Thoralf Albert
Skolem was a Norwegian mathematician who worked in mathematical
logic and showed how to eliminate existential quantifiers from logical
formulas.

Lemma 2.2 (Skolemization). Let A,B be two sets, and F : A×B → R
be an arbitrary function, then

sup
b∈B

inf
a∈A

F (a, b) = inf
g∈G

sup
b∈B

F (g(b), b),

where G := AB is the class of all functions from B → A.
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Proof. Define ĝ(b) := arg infa∈A F (a, b) we have

sup
b

inf
a
F (a, b) = sup

b
F (ĝ(b), b) ≥ inf

g
sup
b
F (g(b), b).

Moreover, let g∗ := arg ming∈G(supb F (g(b), b)) we have

inf
g

sup
b
F (g(b), b) = sup

b
F (g∗(b), b) ≥ sup

b
inf
a
F (a, b).

Therefore, all inequalities become equality and the result follows.

Minimax Theorem. We finish this section with a formulation of von
Neumann minimax theorem which is used later to prove the so called
minimax switching trick that allows us to express some minimax formu-
lations via the average over some distributions.

We start with the Minimax Theorem that we present without a
proof, see [9, Theorem 7.1].

Theorem 2.3 (Minimax Theorem). Let f : A × B → R be a bounded
real-valued function, where both A and B are convex sets and A is
compact. If f(·, b) is convex and continuous on A for any b ∈ B, and
f(a, ·) is concave on B for any a ∈ A, then

inf
a∈A

sup
b∈B

f(a, b) = sup
b∈B

inf
a∈A

f(a, b).

This theorem is stronger than von Neumann’s minimax theorem,
which specifically considers the case when f is a bi-linear function.
It differs slightly from Sion’s minimax theorem, which requires only
semi-continuity and quasi-convexity (-concavity).

We complete this section with a useful trick, called the minimax
switching trick that we shall use throughout this exposition when
dealing with minimax regrets. Here, we write ∆(B) to denote a set of
distributions over B.

Theorem 2.4 (Minimax Switching Trick). Let A be a convex set, B be a
set such that ∆(B) is compact, and let f : A×B → R be a bounded
function such that f(·, b) is convex for all b ∈ B. Then:

inf
a∈A

sup
b∈B

f(a, b) = sup
µ∈∆(B)

inf
a∈A

Eb∼µ[f(a, b)].
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Proof. Note that:

inf
a∈A

sup
b∈B

f(a, b) = inf
a∈A

sup
µ∈∆(B)

Eb∼µ[f(a, b)].

Denote F (a, µ) = Eb∼µ[f(a, b)]. We have F (·, µ) is convex over A,
and F (a, ·) is linear (therefore concave) over ∆(B). By the Minimax
Theorem 2.3 we conclude:

inf
a∈A

sup
µ∈∆(B)

F (a, µ) = sup
µ∈∆(B)

inf
a∈A

F (a, µ)

and this completes the proof.

2.4 Fano Inequality and Le Cam Two Point method

We often use terminology and methods of estimation in this paper. Fano
inequality and Le Cam two-point methods are the most useful tools in
this area that help us simplify our proofs.

Fano Inequality. Assume that X is a random variable with finite
outcome X . Furthermore, X̂ = g(Y ) is the predicted value of X after
seeing Y , which is also defined over X . We write H(X) and H(X|Y ) for
the entropy of X and conditional entropy of X under Y , respectively.
Throughout we assume that g is a deterministic function. Then Fano
inequality states

pe := P (X̂ ̸= X) ≥ H(X|Y )− 1
log |X | (2.3)

or more strongly

H(Ber(pe)) + pe log(|X | − 1) ≥ H(X|Y ) (2.4)

where Ber(pe) is the Bernoulli random variable E with P (E = 1) = pe.
To see this, let E = 1 if X̂ ̸= X and 0 otherwise, that is, P (E = 1) = pe.
We now write H(E,X|Y ) in two different ways:

H(E,X|Y ) = H(X|Y ) +H(E|X,Y )
H(E,X|Y ) = H(E|Y ) +H(X|E, Y ).
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Since H(E|X,Y ) = 0, after comparing both sides of the above, and
noting that for any X and Y , H(X) ≥ H(X|Y ) we conclude that

H(X|Y ) ≤ H(Ber(pe)) +H(X|E, Y )

and

H(X|E, Y ) = H(X|E = 0, Y )P (E = 0) +H(X|E = 1, Y )P (E = 1).

But H(X|E = 0, Y ) = 0 and H(X|E = 1, Y ) ≤ log(|X | − 1) since
when E = 1, the random variable X can take only |X | − 1 values. This
completes the derivation of (2.4).

Using the fact H(X|Y ) = H(X) − I(X;Y ) and assuming X is
uniform over X , we obtain the following useful form from (2.3)

pe ≥ 1− I(X;Y ) + 1
log |X | ≥ 1−

inf
Q

1
|X |

∑
x∈X

KL(PY |X=x∥Q) + 1

log |X | . (2.5)

Here, we used the following fact (for X uniform over X ):

I(X;Y ) := 1
|X |

∑
x∈X

KL(PY |X=x∥PY )

= 1
|X |

∑
x∈X

KL(PY |X=x∥Q)− KL(PY ∥Q)

≤ 1
|X |

∑
x∈X

KL(PY |X=x∥Q)

where Q is any distribution over X and KL is the Kullback–Leibler
divergence.

Le Cam Two Point Method. We are again in the realm of estimation
and let X be drawn from distribution Pθ parametrized by θ ∈ Θ. For a
given loss function ℓ(θ, θ̂) with θ̂ being an estimation of θ, the average
minimax risk can be defined as follows:

Rn(Θ) = inf
θ̂

sup
θ∈Θ

EXℓ(θ, θ̂(X)) ≥ inf
θ̂

sup
θ∈{θ0,θ1}

EXℓ(θ, θ̂(X))

where θ0, θ1 ∈ Θ are any two sources from Θ.
We now state the Le Cam method in its generality, but we derive it

only for the indicator function loss.
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Lemma 2.5 (Le Cam Method). Let the positive loss function ℓ(θ0, θ1)
satisfy α-triangle inequality

ℓ(θ0, θ1) ≤ α[ℓ(θ0, θ) + ℓ(θ1, θ)]

for all θ, θ0, θ1 ∈ Θ and some α > 0. Then

inf
θ̂

sup
θ∈Θ

EXℓ(θ, θ̂(X)) ≥ sup
θ0,θ1∈Θ

ℓ(θ0, θ1)
2α (1− TV(Pθ0 , Pθ1) (2.6)

where TV is the total variation distance.

The proof can be found in [31], so here we only sketch the derivation
for the case when the loss function is just the indicator function, that
is, ℓ(θ0, θ1) = 1{θ0 ̸= θ1}. For simplicity, we denote θ0, θ1 as 0, 1,
respectively, and write P0 and P1 for Pθ0 and Pθ1 . Then, we observe

inf
θ̂

sup
θ∈{0,1}

Pθ(θ̂ ̸= θ) ≥ 1
2 inf

θ̂

(
P0(θ̂ ̸= 0) + P1(θ̂ ̸= 1)

)
.

But it is easy to observe that

inf
θ̂

(
P0(θ̂ ̸= 0) + P1(θ̂ ̸= 1)

)
= 1− TV(P0, P1).

Thus combining the last two assertions we obtain the following expres-
sion for the Le Cam method.

Lemma 2.6. The following holds

inf
θ̂

sup
θ∈{0,1}

Pθ(θ̂ ̸= θ) ≥ 1
2 −

1
2TV(P0, P1) ≥ 1

2 −
1

2
√

2 log e

√
KL(P0∥P1)

(2.7)
where the last inequality follows from Pinsker’s inequality.

For any distributions P0, P1, the Pinsker’s inequality states (see [31]):

TV(P0, P1) ≤
√

KL(P0∥P1)/(2 log e). (2.8)

2.5 Martingale Concentration Inequalities

We present some standard concentration results for Martingales, which
will be useful for deriving high probability guarantees. We refer to [32,
Chapter 13.1] for the proofs.
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Lemma 2.7 (Azuma’s Inequality). Let X1, · · · , XT be an arbitrary ran-
dom process adapted to some filtration {Ft}t≤T such that |Xt| ≤M for
all t ≤ T . Let Yt = E[Xt | Ft−1] be the conditional expected random
variable of Xt. Then for all δ > 0, we have:

Pr
[
T∑
t=1

Yt <
T∑
t=1

Xt +M
√

(T/2) log(1/δ)
]
≥ 1− δ,

and

Pr
[
T∑
t=1

Yt >
T∑
t=1

Xt −M
√

(T/2) log(1/δ)
]
≥ 1− δ.

The following lemma provides a tighter concentration when Xt ≥ 0,
which can be viewed as a Martingale version of the multiplicative
Chernoff bound.

Lemma 2.8 ([32, Theorem 13.5]). Let X1, · · · , XT be an arbitrary
random process adapted to some filtration {Ft}t≤T such that 0 ≤ Xt ≤
M for all t ≤ T . Let Yt = E[Xt | Ft−1] be the conditional expectation
of Xt. Then for all δ > 0 we have:

Pr
[
T∑
t=1

Yt < 2
T∑
t=1

Xt + 2M log(1/δ)
]
≥ 1− δ,

and

Pr
[
T∑
t=1

Yt >
1
2

T∑
t=1

Xt − (M/2) log(1/δ)
]
≥ 1− δ.

Proof. Applying Zhang [32, Thm 13.5] with ξt = Xt/M and λ = 1 in
the theorem.

Remark 2.1. It should be noted that the assumption Xt ≥ 0 is required
for Lemma 2.8 to hold. To see this, we group XT as X1X2, X3X4, · · ·
such that X2t−1 is uniform over {−1, 1} and X2t = −X2t−1 for all
t ∈ [T ]. It is easy to verify that X1 + · · ·+XT = 0 almost surely. But
Y2t−1 = 0 and Y2t = −X2t−1, hence, we have Y1 + · · · + YT is sum of
T/2 independent uniform distributions over {−1, 1}. Therefore, by the
central limit theorem Y1 + · · ·+ YT ≥ Ω(

√
T ) with constant probability.
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The following lemmas provide tighter bounds for general (not nec-
essarily non-negative) processes by leveraging higher-order moment
information.

Lemma 2.9 ([32, Theorem 13.2]). Let X1, · · · , XT be a random pro-
cess adapted to some filtration {Ft}t≤T , and Et be the conditional
expectation on Ft−1. Then, for any α, δ > 0 we have:

Pr

− T∑
t−1

logEt[e−αXt ] ≤ α
T∑
t=1

Xt + log(1/δ)

 ≥ 1− δ.

Lemma 2.10 (Freedman’s inequality). Let X1, . . . , XT be a martingale
difference sequence adapted to a filtration {Ft}t≤T , that is, E[Xt |
Ft−1] = 0 for all t ≤ T . Assume |Xt| ≤ M almost surely. Define the
partial sums

St =
t∑

j=1
Xj for t = 1, . . . , T,

and the sum of conditional variances

V 2
T =

T∑
t=1

E[X2
t | Ft−1].

Then for any u, v > 0,

Pr
[

max
1≤t≤T

St > u and V 2
T ≤ v

]
≤ exp

(
− u2

2(v +Mu/3)

)
. (2.9)

and therefore,

Pr
[

max
1≤t≤T

St >
√

2vu+ (
√

2/3)Mu and V 2
T ≤ v

]
≤ e−u.

Proof. See [9, Lemma A.8] or the original proof of Freedman [33].

Note that Lemma 2.10 is also sometimes referred to as Bernstein’s
inequality for martingales (see also Lemma 2.12 below).

We finish this discussion by quoting Hoeffding’s Lemma which is
used in many places of this exposition.
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Lemma 2.11 (Hoeffding’s Lemma). Let X be a random variable with
a ≤ X ≤ b. Then for any s ∈ R, we have

lnE[esX ] ≤ sE[X] + s2(b− a)2

8 .

Proof. Note that lnE[esX ] = sE[X] + lnE[es(X−E[X])], so we only need
to consider the case where E[X] = 0. Observe that for all a ≤ x ≤ b,
we have

esx ≤ x− a
b− a

esb + b− x
b− a

esa,

by Jensen’s inequality and the convexity of esx over x. Taking expec-
tation over x ∼ X on both sides and using E[X] = 0, the right-hand
side can be expressed as a function of s. The lemma follows by Taylor
expansion of this function up to the second order.

Another version of Hoeffding’s Lemma is the Bernstein’s inequality
that we formulate next.

Lemma 2.12. Let X be a random variable taking values in [0, 1]. Then
for any s ∈ R

lnE[esX ] ≤ (es − 1)E[X].

We conclude this chapter with a classical inequality from probability
theory, known as Khinchine’s inequality [34].

Lemma 2.13 (Khinchine’s inequality). Let a1, . . . , aT ∈ R, and let ϵ =
(ϵ1, . . . , ϵT ) be a random vector uniformly distributed over {−1,+1}T .
Then

1√
2

√√√√ T∑
t=1

a2
t ≤ Eϵ

∣∣∣∣∣
T∑
t=1

atϵt

∣∣∣∣∣ ≤
√√√√ T∑
t=1

a2
t .

Proof. By Jensen’s inequality, we have

E
∣∣∣∣∣
T∑
t=1

atϵt

∣∣∣∣∣ ≤
E

( T∑
t=1

atϵt

)21/2

=

√√√√ T∑
t=1

a2
t ,

since ϵt are independent Rademacher variables. The upper bound follows.
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We give a short proof of the lower bound with a suboptimal constant
1/
√

3 from [9, Lemma A.9]. Let X := ∑T
t=1 atϵt. By Hölder’s inequality,

for any bounded random variable X,

E[X2] = E[|X|4/3|X|2/3] ≤ (E[X4])1/3(E[|X|])2/3.

Letting X = ∑T
t=1 atϵt, we obtain

E[|X|] ≥

(∑T
t=1 a

2
t

)3/2

(∑T
t=1 a

4
t + 3∑i ̸=j a

2
i a

2
j

)1/2

(a)
≥ 1√

3

√√√√ T∑
t=1

a2
t ,

where (a) follows from ∑
t a

4
t + 3∑i ̸=j a

2
i a

2
j ≤ 3

(∑
t a

2
t

)2
.

Remark 2.2. The upper bound in Lemma 2.13 holds even when each
coefficient at is a function of past signs, i.e., at = ϕt(ϵ1, . . . , ϵt−1) for
some measurable function ϕt. In this case,

Eϵ

∣∣∣∣∣
T∑
t=1

atϵt

∣∣∣∣∣ ≤
√√√√Eϵ

[
T∑
t=1

a2
t

]
.

However, the lower bound does not generally hold in this adaptive
setting; see [34, Section 6].

2.6 Bibliographical Notes

Most of the tools discussed in this chapter can be found in books such
as [31], [11] and [35]. The minimax switching lemma is from [25], [36].
The large deviations results can be found in [32]. Khinchine inequality
and its generalization can be found in [34].



3
Preliminary Results

In this Chapter we introduce basic concepts of online learning, and
present some general simple predictors such as Consistent Predictor and
Halving Predictor. Then, for the agnostic case, we discuss a popular
algorithm known as the Exponential Weighted Average (EWA) Algorithm
that we use often in our exposition.

3.1 Basic Concepts in Online learning

Let X denote the feature (or instance) space and Y the label space. A
concept is a function c : X → Y representing the true labeling rule. The
set of all possible such functions under consideration is called the concept
class, denoted C ⊂ YX . A hypothesis is a function h : X → Y that a
learning algorithm may output, and the set of candidate hypotheses
it can choose from is the hypothesis class, denoted H ⊂ YX . We say
the learning problem is realizable if C ⊂ H; that is, the true concept
lies within the hypothesis class. Conversely, the problem is agnostic
when no assumptions are made about the concept class, i.e., C := YX .
There can be intermediate cases between the realizable and agnostic
settings. However, in this paper, we focus primarily on the realizable vs.
agnostic dichotomy, and thus do not explicitly refer to the concept class

22
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in subsequent discussions. Instead, we concentrate on the properties
and implications of different hypothesis classes. Finally, we sometimes
allow the output of the learner Φ to lie outside the hypothesis class
H—a setting known as improper learning. If the output of Φ is always
within H, we refer to it as proper learning.

We now define our basic game of online learning.
For t = 1, 2, · · · , T :

1. Nature/Environment presents an instance xt ∈ X

2. Learner predicts a label ŷt ∈ Y

3. Nature reveals true label yt ∈ Y

4. Learner suffers loss ℓ(ŷt, yt), for certain function ℓ : Y × Y → R

The objective is to find a learning rule Φ that minimizes the risk

riskT (Φ) :=
T∑
t=1

ℓ(ŷt, yt). (3.1)

We first prove an old result by Thomas M. Cover from 1965 showing
that without any assumption the risk can grow as T . Indeed, take
Y := {0, 1} and let ℓ(ŷ, y) := 1{ŷ ≠ y}. Then, riskT (Φ) reduces to the
number of mistakes made by Φ to predict the yt’s. Let Φ be any learning
rule. Consider the following simple strategy for Nature:

• At each time step t, after the learner makes the prediction ŷt,
Nature adversarially chooses yt ∈ Y such that yt ̸= ŷt.

The number of mistakes made by the learner equals T , i.e., the learner
errs at every step.

Corollary 3.1 (Cover, 1965). Any learning rule Φ cannot achieve a
mistake bound better than T .

This sounds uninteresting, so what is the catch? Observe that we
did not use any prior knowledge about the learning target.



24 Preliminary Results

3.2 Incorporating Prior Knowledge: Realizable Case

Let H := {h1, · · · , hK} ⊂ YX be a hypothesis class, and assume that
Nature’s strategy is realizable, i.e., there exists an h ∈ H such that for
all t ≤ T we have h(xt) = yt.

We now introduce the first, not very efficient, learning algorithm
called the consistent predictor.

1. At each time step t, find any consistent hypothesis ĥt ∈ H (which
must exist due to realizability) such that:

t−1∑
i=1

1{ĥt(xi) ̸= yi} = 0.

2. Make the prediction: ŷt = ĥt(xt).

The question is how many mistakes will we make? Notice that each
mistake will eliminate at least one function from H, so the total number
of mistakes is upper bounded by |H|. Actually, we can prove that it is
also a lower bound.

Lower Bound on Consistent Predictor. Consider the following hypothesis
class:

x1 x2 x3 x4 · · ·
h0 0 0 0 0 · · ·
h1 1 0 0 0 · · ·
h2 0 1 0 0 · · ·
h3 0 0 1 0 · · ·
h4 0 0 0 1 · · ·
...

...
...

...
... . . .

Assume that h0 is the ground truth predictor. At each time step
t, both ht and h0 are consistent with the prior data. Consider now a
consistent predictor that always selects ht to make predictions at step t,
which will incur at least |H| mistakes. Thus, in the worst-case scenario,
a consistent predictor cannot achieve a mistake bound better than |H|.
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It turns out we can use a smarter way to eliminate inconsistent
hypotheses via the so-called halving predictor.

1. Maintain a running hypothesis class H(t) with H(0) := H

2. At each time step t, after receiving xt, we define for y ∈ {0, 1}

H(t)
y = {h ∈ H(t−1) : h(xt) = y}.

3. Predict ŷt = arg maxy∈{0,1}{|H
(t)
0 |, |H

(t)
1 |}

4. Let yt be true label, update H(t) = H(t)
yt

Every time a mistake happens (i.e., ŷt ≠ yt), we have |H(t)| ≤ |H(t−1)|/2.
Thus, total number of mistakes is upper bounded by log |H| (an expo-
nential improvement over the |H| lower bound!).

3.3 Incorporating Prior Knowledge: Agnostic Case

Both the consistent and halving predictors rely heavily on the assump-
tion that the data is realizable, i.e., there exists h ∈ H that is consistent
with all the data. A single mismatch between the true data and the best
hypothesis in H will cause both predictors to catastrophically fail. So
the question is whether we can develop an algorithm that is robust to
potential noise? To do so we need to recognize that an absolute mistake
bound is not very informative and we must instead consider guarantees
relative to the minimal mistakes achievable by a hypothesis in H. This
leads to the definition of regret, one of the most important notations on
machine learning that we shall use throughout this paper.

Let

M̂T :=
T∑
t=1

1{ŷt ̸= yt} (3.2)

M∗
T := inf

h∈H

T∑
t=1

1{h(xt) ̸= yt} (3.3)
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where M̂T measures the number of mistakes made by a predictor Φ,
and M∗

T measures the minimal number of mistakes achievable by any
hypothesis in H. Then we define the α-agnostic regret for α > 0 as

reg(α)
T (Φ,H) := M̂T − αM∗

T . (3.4)

Let H := {h1, · · · , hK} be any finite hypothesis class of size K. We
now introduce Algorithm 3.1 known as the exponential weights predictor.
This algorithm is one of the most commonly used in the field.

Algorithm 3.1 Exponential Weighted Average (EWA) Algorithm
1: Maintain a weight vector w(t) ∈ RK , initially w(0) = (1, · · · , 1).
2: for t = 1, · · · , T do
3: After receiving xt, compute the weighted average:

p̂t =
K∑
k=1

w
(t−1)
k∑K

k=1w
(t−1)
k

hk(xt).

4: Predict ŷt = 1{p̂t ≥ 1
2}, i.e., we predict the weighted-majority.

5: After receiving yt, update the weight w(t)
k as follows:

w
(t)
k =

w
(t−1)
k , if hk(xt) = yt,

(1− η)w(t−1)
k , if hk(xt) ̸= yt,

where η ≤ 1 is a tunable parameter.
6: end for

We now prove the following result regarding the regret.

Theorem 3.2. Regardless of how Nature generates the data, the (deter-
ministic) EWA algorithm Φ enjoys the following mistake bound:

M̂T ≤ 2(1 + η)M∗
T + 2 ln(|H|)

η
(3.5)

hence the 2-agnostic regret is

reg(2)
T (Φ,H) ≤ O(

√
M∗
T log |H|). (3.6)
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Proof. For any time step t, we define the potential:

W (t) =
K∑
k=1

w
(t)
k , with W (0) = K.

Let
It := {k ∈ [K] : hk(xt) = yt}, Jt := [K] \ It.

If the prediction at time t is incorrect, i.e., ŷt ̸= yt, then by the weighted
majority prediction: ∑

k∈Jt

w
(t−1)
k ≥

∑
k∈It

w
(t−1)
k .

Hence, for each time step t where a mistake occurs, the potential
satisfies:

W (t) =
K∑
k=1

w
(t)
k

= (1− η)
∑
k∈Jt

w
(t−1)
k︸ ︷︷ ︸

A

+
∑
k∈It

w
(t−1)
k︸ ︷︷ ︸

B

(a)
≤
(1− η

2 + 1
2

)
W (t−1) =

(
1− η

2

)
W (t−1),

where step (a) uses the facts that A+B = W (t−1), A ≥ B, and 1−η ≤ 1.
Applying this inequality over all time steps t = 1, . . . , T , we obtain:

(1− η)M∗
T ≤W (T ) ≤W (0)

(
1− η

2

)M̂T

≤ K ·
(

1− η

2

)M̂T

,

where M∗
T is the number of mistakes by the best expert, and M̂T is the

number of mistakes made by the algorithm.
Taking natural logarithms of both sides and using:

ln(1− η) ≥ −η − η2 and ln
(

1− η

2

)
≤ −η2 for η < 1

2 ,

we complete the proof of (3.5). To obtain (3.6) we put optimal η =√
lnH/M∗

T to complete the proof.
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Thus far, we have obtained a regret bound for α = 2, and the natural
question is whether it can be improved to α = 1. It turns out that for
deterministic predictors, this is not possible. To see why, consider the
hypothesis class H = {h0, h1}, where each hb(x) = b for all x ∈ X and
b ∈ {0, 1}. Following Cover’s construction, any deterministic predictor
can be forced to make T mistakes, while the best hypothesis in hindsight
incurs at most T/2 mistakes. Therefore, no deterministic predictor can
achieve sublinear regret when α = 1.

Nevertheless, we can show that sublinear regret with α = 1 is
achievable by using the randomized Exponentially Weighted Average
(EWA) algorithm, as described below.

Algorithm 3.2 Randomized Exponentially Weighted Average (REWA)
1: Initialize: Set weights w(0) = (1, . . . , 1) ∈ RK .
2: for each round t = 1, 2, . . . , T do
3: Define distribution p̃t[k] = w

(t−1)
k∑K

j=1 w
(t−1)
j

for all k ∈ [K].

4: Sample k̂t ∼ p̃t and predict ŷt := hk̂t
(xt).

5: Update weights:

w
(t)
k = w

(t−1)
k · exp (−η · 1{hk(xt) ̸= yt}) , ∀k ∈ [K],

where η < 1 is a tunable learning rate.
6: end for

With this predictor in mind, we can prove the following stronger
results on α = 1 regret.

Theorem 3.3. Regardless of how Nature generates the data, as long as
the selection is independent to the internal randomness of the predictor,
we have

EŷT

[
T∑
t=1

1{ŷt ̸= yt}
]
≤M∗

T + ln(|H|)
η

+ ηT

8

leading to

reg(1)
T (Φ,H) ≤ O(

√
T log |H|). (3.7)
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Proof. We again define the potential W (t) = ∑K
k=1w

(t)
k . Observe that:

ln W (t)

W (t−1) = ln
K∑
k=1

w
(t−1)
k

W (t−1) e
−η1{hk(xt )̸=yt}

(a)
≤ −η

K∑
k=1

w
(t−1)
k

W (t−1) 1{hk(xt) ̸= yt}+ η2

8
(b)= −ηEŷt [1{ŷt ̸= yt}] + η2

8 ,

where (a) follows by Hoeffding’s Lemma [9, Lemma A.1] (see also
Lemma 2.11) and (b) follows from the definition of ŷt. Summing from
t = 1 to T , we get:

−ηM∗
T ≤ lnW (T ) ≤ −ηEŷT

[
T∑
t=1

1{ŷt ̸= yt}
]

+ η2T

8 + ln |H|.

The regret bound follows by rearranging the inequality. The formula
for the regret follows from it by selecting optimal η.

3.3.1 General Losses

We complete this section with the EWA algorithm for general losses.
Let Y = [0, 1] and H ⊂ [0, 1]X be a finite hypothesis class of size K. Let
ℓ : Y × Y → [0, 1] be a loss function that is convex in its first argument.
Then the generalized EWA predictor works as follows:

Using the same tools as in the proof of Theorem 3.3, we can establish
the following result:

Theorem 3.4. For any data xT , yT and any bounded convex loss ℓ(ŷ, y),
Algorithm 3.3 enjoys the following risk bound

T∑
t=1

ℓ(ŷt, yt) ≤ inf
h∈H

T∑
t=1

ℓ(h(xt), yt) + ln(|H|)
η

+ ηT

8 .

Taking η =
√

8 ln(|H|)
T , we have

reg(1)
T (Φ,H) ≤ O(

√
T log |H|). (3.8)
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Algorithm 3.3 Exponential Weighted algorithm for General Loss
1: Initialize: Set weights w(0) = (1, . . . , 1) ∈ RK .
2: for each round t = 1, 2, . . . , T do
3: Define distribution p̃t[k] = w

(t−1)
k∑K

j=1 w
(t−1)
j

, ∀k ∈ [K].

4: Predict ŷt := ∑K
k=1 p̃t[k] · hk(xt).

5: Update weights:

w
(t)
k = w

(t−1)
k · exp (−η · ℓ(hk(xt), yt)) , ∀k ∈ [K],

where η < 1 is a tunable learning rate.
6: end for

Proof. Define the potential W (t) = ∑K
k=1w

(t)
k . Observe that:

ln W (t)

W (t−1) = ln
K∑
k=1

w
(t−1)
k

W (t−1) e
−ηℓ(hk(xt),yy)

(a)
≤ −η

K∑
k=1

w
(t−1)
k

W (t−1) ℓ(hk(xt), yt) + η2

8

(b)= −η · ℓ
(

K∑
k=1

w
(t−1)
k · hk(xt)
W (t−1) , yt

)
+ η2

8
(c)= −η · ℓ(ŷt, yt) + η2

8

where (a) follows by Hoeffding’s Lemma [9, Lemma A.1] and ℓ(ŷ, y) ∈
[0, 1]; (b) follows by the convexity of ℓ; and (c) follows by the definition
of ŷt. The theorem now follows the same way as Theorem 3.3

We now complete this section with a stronger regret bound for the
exp-concave losses (e.g, log-los and Brier loss) discussed in Chapter 2.1.

Theorem 3.5. For any data xT , yT and any α-exp-concave loss ℓ(ŷ, y)
(cf. Chapter 2.1), Algorithm 3.3 with η := α enjoys the following regret
bound:

reg(1)
T (Φ,H) ≤ log |H|

α
.
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Proof. Denote W (t) = ∑K
k=1w

(t)
k . We have (taking η := α):

ln W (t)

W (t−1) = ln
K∑
k=1

w
(t−1)
k

W (t−1) e
−αℓ(hk(xt),yt)

≤ ln e
−αℓ
(∑K

k=1
w

(t−1)
k

W (t−1) hk(xt),yt

)
= ln e−αℓ(ŷt,yt) = −αℓ(ŷt, yt),

where the inequality follows by Jensen and α-Exp-concavity of ℓ. The
theorem now follows the same way as Theorem 3.3.

3.4 Bibliographical Notes

The materials in this section are mostly standard, and can be found in
textbooks such as [9] and [11].



4
Minimax Regret

In this section, we collect definitions and general results regarding the
minimax regret, one of the most important measures in online learning
problems. We first discuss the worst-case minimax regret, and then
briefly address the expected minimax regret. For logarithmic loss (for a
detailed analysis see Chapter 5), we introduce the so-called Shtarkov
sum, which will be used throughout to analyze the minimax regret.
For Lipschitz loss (for a detailed analysis see Chapter 6), we present
the so-called Bayesian representation via the Minimax Switching Trick,
which will also be used in the analysis of regret.

4.1 Definitions and General Results

Let X be the instance space, Y the label space, and Ŷ a (convex)
outcome space of predictors. We define the hypothesis class as H ⊂ ŶX ,
and the (possibly improper) learning rule as

Φ : (X × Y)∗ ×X → Ŷ.

We consider the following general online learning game:
For t = 1, 2, . . . , T :

1. Nature (or the environment) presents an instance xt ∈ X .

32
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2. The learner predicts a label ŷt ∈ Ŷ via ŷt := Φ(xt, yt−1).

3. Nature reveals the true label yt ∈ Y.

4. The learner suffers a loss ℓ(ŷt, yt), for some loss function:

ℓ : Ŷ × Y → R.

The learner’s goal is to minimize, against the worst-case Nature,
the regret, which is defined as the excess of the cumulative loss over the
best cumulative loss achieved by any expert in the hypothesis class H.
For any given xT ∈ X T and yT ∈ YT , the point-wise regret is defined as

RT (H,Φ,xT , yT ) :=
T∑
t=1

ℓ(Φ(xt, yt−1), yt)− inf
h∈H

T∑
t=1

ℓ(h(xt), yt). (4.1)

The worst-case regret for a given learning rule Φ is defined as

regT (H,Φ) := sup
xT ,yT

RT (H,Φ,xT , yT ).

The minimax regret for the hypothesis class H is defined as

regT (H) := inf
Φ

regT (H,Φ) = inf
Φ

sup
xT ,yT

RT (H,Φ,xT , yT ). (4.2)

The next result shows that the above definition is equivalent to the
sequential regret briefly discussed in Chapter 1.2.

Theorem 4.1. The minimax regret satisfies

regT (H) = sup
x1

inf
ŷ1

sup
y1
· · · sup

xT

inf
ŷT

sup
yT

[
T∑
t=1

ℓ(ŷt, yt)− inf
h∈H

T∑
t=1

ℓ(h(xt), yt)
]

(4.3)
for any loss function ℓ and class H.

Proof. We prove only the case for T = 1 to demonstrate the idea. Define
the function:

F (a, b) := sup
y1

[
ℓ(a, y1)− inf

h∈H
ℓ(h(b), y1)

]
.

Note that:
reg1(H) := inf

Φ
sup
x1

F (Φ(x1),x1).
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By Skolemization Lemma 2.2, we have:

inf
Φ

sup
x1

F (Φ(x1),x1) = sup
x1

inf
ŷ1
F (ŷ1,x1).

Plugging back the expression of F (a, b), we find

reg1(H) = sup
x1

inf
ŷ1

sup
y1

[
ℓ(ŷ1, y1)− inf

h∈H
ℓ(h(x1), y1)

]
.

Iterating this argument we prove Theorem 4.1.

Note that in the definition of minimax regret, the predictor must
compete with the worst-case data sequences xT , yT , which can some-
times be overly pessimistic in real-world scenarios. Depending on how
the features are selected, one may also consider the following relaxed
notions of minimax regret:

Expected Worst-Case Minimax Regret. In this case, Nature selects
some distribution νννT over X T (i.e., a random process) and samples
xT ∼ νννT where xT = (x1, . . . ,xT ). At each time step t ≤ T , Nature
reveals xt to the predictor, who makes a prediction ŷt = Φ(xt, yt−1)
potentially using the history xt = (x1, · · · ,xt) and yt−1 = (y1, · · · , yt−1)
that are observed thus far. Nature then reveals the true label yt after the
prediction, and the predictor incurs a loss ℓ(ŷt, yt) for some predefined
convex loss function ℓ : Ŷ × Y → [0,∞). The expected worst-case
minimax regret is then defined as:

regT (H,P) = inf
Φ

sup
νννT ∈P

ExT ∼νννT

[
sup
yT

T∑
t=1

ℓ(Φ(xt, yt−1), yt)− inf
h∈H

T∑
t=1

ℓ(h(xt), yt)
]
,

(4.4)
where H is a class of functions X → Ŷ, P is a general class of ran-
dom processes over X T , and the predictor Φ runs over all possible
(deterministic) prediction rules.

Fixed Design Minimax Regret. In some scenarios the so called fixed
design or transductive regret are of interest. In this case, the feature xT
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is known in advance. More precisely, for any given xT , we define the
fixed design minimax regret as:

reg∗
T (H | xT ) = inf

Φ
sup
yT

[
T∑
t=1

ℓ(Φ(xT , yt−1), yt)− inf
h∈H

T∑
t=1

ℓ(h(xt), yt)
]
.

(4.5)
Recall the (sequential) minimax regret is defined as:

regT (H) = inf
Φ

sup
xT ,yT

[
T∑
t=1

ℓ(Φ(xt, yt−1), yt)− inf
h∈H

T∑
t=1

ℓ(h(xt), yt)
]
.

It is easy to observe that:

reg∗
T (H) := sup

xT

reg∗
T (H | xT ) ≤ regT (H). (4.6)

Thus reg∗
T (H) can be viewed as a universal lower bound for regret.

4.2 Minimax Regret for Bounded Lipchitz Loss: Switch Lemma

We now present a general theorem regarding the worst-case minimax
regret for bounded Lipschitz loss, which is due to [24]. Let Y = Ŷ :=
[0, 1] and H ⊂ ŶX . The minimax regret for H can be expressed as in
Theorem 4.1

regT (H) = sup
x1

inf
ŷ1

sup
y1
· · · sup

xT

inf
ŷT

sup
yT

[
T∑
t=1

ℓ(ŷt, yt)− inf
h∈H

T∑
t=1

ℓ(h(xt), yt)
]
.

However, this iterative minimax operator may be hard to compute. It
turns out that we can replace it by a simpler operator as shown below.

Theorem 4.2. Assume the loss ℓ is bounded and ℓ(·, y) is convex and
continuous, Ŷ is convex and ∆(X × Y) is compact. Then the minimax
regret regT (H) equals

sup
νννT ∈∆(X ×Y )T

E(xT ,yT )∼νννT

[
T∑
t=1

inf
ŷ∈Ŷ

Et[ℓ(ŷt, yt)]− inf
h∈H

T∑
t=1

ℓ(h(xt), yt)
]
,

(4.7)

where ∆(X × Y )T is the set of all distributions over (X × Y )T and Et
denotes the conditional expectation of νννT conditioning on xt, yt−1.
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Proof. Observe that the iterated minimax formulation can be written
as:

sup
z0

inf
ŷ1

sup
z1
· · · inf

ŷT

sup
zT

[
T∑
t=1

ℓ(ŷt, yt)− inf
h∈H

T∑
t=1

ℓ(h(xt), yt)
]
,

where z0 = x1, zt = (yt,xt+1) for t < T and zT = yT . Consider the last
layer:

inf
ŷT

sup
zT

T∑
t=1

ℓ(ŷt, yt)− inf
h∈H

T∑
t=1

ℓ(h(xt), yt)︸ ︷︷ ︸
F (zT )

=
T−1∑
t=1

ℓ(ŷt, yt) + inf
ŷT

sup
zT

[
ℓ(ŷT , zT )− F (zT )

]
.

We now bound the second term. By the Minimax Switching Theorem 2.4,
we have:

inf
ŷT

sup
zT

[
ℓ(ŷT , zT )− F (zT )

]
= sup

µT ∈∆(X ×Y)
inf
ŷT

EzT ∼µT

[
ℓ(ŷT , zT )− F (zT )

]
= sup

µT

inf
ŷT

[
EzT [ℓ(ŷT , zT )]− EzT [F (zT )]

]
= sup

µT

[
inf
ŷT

EzT [ℓ(ŷT , zT )]− EzT [F (zT )]
]

= sup
µT

EzT

[
inf
ŷT

EzT [ℓ(ŷT , zT )]− F (zT )
]
.

Note now that

sup
µ1

Ez1∼µ1 · · · sup
µT

EzT ∼µT

(a)
≡ sup

νννT ∈∆((X ×Y)T )
EzT ∼νννT ,

where νννT is a joint distribution over (X × Y)T and (a) follows by
Skolemization. We conclude:

regT (H) = sup
νννT ∈∆((X ×Y)T )

EzT ∼νννT

[
T∑
t=1

inf
ŷt

Ezt [ℓ(ŷt, zt)]− F (zT )
]

and this completes the proof.
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4.3 Minimax Regret for Logarithmic Loss: Shtarkov Sum

We now consider a special yet important loss: the logarithmic loss, which
is non-Lipschitz and unbounded. As a result, the guarantees from the
previous section do not apply directly. Let Y denote the label space,
and let ∆(Y) be the set of all probability distributions over Y. The
logarithmic loss for any p ∈ ∆(Y) and y ∈ Y is defined as:

ℓlog(p, y) = − log p[y]. (4.8)

We start by considering the fixed design minimax regret introduced
in (4.5) which for logarithmic loss becomes

reg∗
T (H | xT ) = inf

Φ
sup
yT

[
T∑
t=1

ℓlog(p̂t, yt)− inf
h∈H

T∑
t=1

ℓlog(h(xt), yt)
]
, (4.9)

where p̂t = Φ(xT , yt−1) ∈ ∆(Y). We can express the fixed design
minimax regret (4.9) via the so-called Shtarkov sum discussed next. Let
H ⊂ ∆(Y)X be a hypothesis class and xT be any given instances. The
Shtarkov sum of H conditioning on xT is defined as

Sht(H | xT ) =
∑

yT ∈YT

sup
h∈H

T∏
t=1

h(xt)[yt] (4.10)

Example 4.1. Let H be a finite class, we have for any xT that

Sht(H | xT ) =
∑

yT ∈YT

sup
h∈H

T∏
t=1

h(xt)[yt]

≤
∑

yT ∈YT

∑
h∈H

T∏
t=1

h(xt)[yt]

=
∑
h∈H

∑
yT ∈YT

T∏
t=1

h(xt)[yt]
(a)
≤
∑
h∈H

1 = |H|

where (a) follows from the fact that the second sum adds to 1 since it
represents a distribution.

The next theorem shows that the fixed design minimax regret for
logarithmic loss can be computed via the Shtarkov sum.
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Theorem 4.3. Let H ⊂ ∆(Y)X be any hypothesis class, and let xT be
any given instances. Then

regfix
T (H | xT ) = log Sht(H | xT ). (4.11)

Proof. We introduce the following short-hand notations

Ph(yT | xT ) =
T∏
t=1

h(xt)[yt], Q̂(yT ) =
T∏
t=1

p̂t[yt].

Observe, by definition of log-loss, that

regfix
T (H | xT ) = inf

Q̂
sup
yT

[
− log Q̂(yT ) + log sup

h
Ph(yT | xT )

]
= inf

Q̂
sup
yT

[
− log Q̂(yT ) + logP ∗(yT | xT )

]
+ log

∑
yT

sup
h
Ph(yT | xT )

(a)= log
∑
yT

sup
h
Ph(yT | xT ) = log Sht(H | xT ),

where P ∗(yT | xT ) := suph Ph(yT |xT )∑
suph Ph(yT |xT ) and (a) follows setting optimal

Q̂(·) ≡ P ∗(· | xT ).

A by-product of our previous proof shows that the minimax optimal
predictor satisfies equality

Q̂(·) ≡ P ∗(· | xT ),

where
P ∗(yT | xT ) := suph Ph(yT | xT )∑

yT suph Ph(yT | xT )

and Q̂(yT ) = ∏T
t=1 p̂t[yt]. To satisfy the equality, we can define

p̂t[y] =
∑
yT −t P ∗(yt−1yyT−t | xT )∑

yT −t+1 P ∗(yt−1yT−t+1 | xT ) .

This is known as the Normalized Maximum Likelihood (NML) predictor.
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Finally, we made two remarks. For a finite class H, we immediately
have

regfix
T (H | xT ) = log Sht(H | xT ) ≤ log |H|.

Furthermore, the Shtarkov sum forms a lower bound for the (sequential)
minimax regret:

regT (H) ≥ sup
xT

regfix
T (H | xT ) ≥ sup

xT

log Sht(H | xT ).

Minimax Regret via Contextual Shtarkov. Thus far, we have only
dealt with fixed design minimax regret for logarithmic loss. However,
it can also be extended to the sequential minimax regret. For this, we
need a new concept, recently introduced by [37], called the contextual
Shtarkov sum.

Let τ : ⋃Tt=0 Yt → X be an X -valued |Y|-ary tree of depth T . The
contextual Shtarkov sum w.r.t. τ is defined as

Sht(H | τ) =
∑
yT

sup
h∈H

T∏
t=1

h(τ(yt−1))[yt]. (4.12)

It turns out that the contextual Shtarkov is the needed tool to express
the sequential minimax regret as shown in the below theorem.

Theorem 4.4. Let H ⊂ ∆(Y)X be any hypothesis class. Then:

regT (H) = sup
τ

log Sht(H | τ).

Sketch of Proof. We provide only the high-level idea (for a detailed
proof see [37]):

Step One: Using the minimax switching trick as in Theorem 2.4 and
a truncation argument, we obtain the following Bayesian representation:

sup
x1,p1

Ey1∼p1 · · · sup
xT ,pT

EyT ∼pT

[
T∑

t=1
inf
p̂t

Eyt∼pt

[
ℓlog(p̂t, yt)

]
− inf

h∈H

T∑
t=1

ℓlog(h(xt), yt)
]
.

Step Two: Observe that:

inf
p̂t

Eyt∼pt

[
ℓlog(p̂t, yt)

]
= H(pt),
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where H(pt) is the Shannon entropy.

Step Three: Via Skolemization Lemma 2.2 the expression reduces
to:

sup
τ

sup
P

EyT ∼P

[
H(P )− inf

h∈H

T∑
t=1

ℓlog(h(τ(yt−1)), yt)
]
,

where τ runs over all trees τ : ⋃Tt=1 Yt → X and P ∈ ∆(YT ).
Step Four: Denote xt = τ(yt−1), and let Ph(yT |xT ) = ∏T

t=1 h(xt)[yt].
We have

inf
h∈H

T∑
t=1

ℓlog(h(τ(yt−1)), yt) = inf
h
− logPh(yT |xT ) = − sup

h
logPh(yT |xT ).

Therefore, we find

sup
P

EyT ∼P

[
H(P ) + log sup

h
Ph(yT |xT )

]
= sup

P
E
[
− logP (yT ) + log sup

h
Ph(yT |xT )

]
= sup

P
E
[
− logP (yT ) + logP ∗(yT |xT )

]
+ log

∑
yT

sup
h

T∏
t=1

h(xt)[yt]

= sup
P
−KL(P , P ∗)︸ ︷︷ ︸

=0

+ log
∑
yT

sup
h

T∏
t=1

h(xt)[yt].

Here, P ∗(yT |xT ) = suph Ph(yT |xT )∑
yT suph Ph(yT |xT ) , and the last equality is attained

at P = P ∗.

4.4 Bibliographical Notes

There is a vast literature on redundancy and regret in information
theory [1], [38], [39], [2], [6]–[8], [19]. The notions of regret and minimax
regret in machine learning are well known and have been extensively
discussed; see, e.g., [11], [40].

Theorem 4.1 appears to be known (see [9]); however, the proof
presented in this chapter seems to be new. The fixed-design minimax
regret has been previously studied in the machine learning literature
under the name Transductive Online Learning; see [41]. The Bayesian
representation of minimax regret in Theorem 4.2 was developed by [24].
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The logarithmic loss is extensively discussed in the information
theory literature in the context of source coding. In 1984, Shtarkov [18]
introduced the worst-case minimax redundancy for source coding and
used the maximum likelihood distribution to derive a precise inequality
on the worst-case redundancy via the Shtarkov sum. This was trans-
lated in [2] into an exact expression for worst-case redundancy, where
sequences modulo 1 are used to characterize redundancy for Shannon
and Huffman codes. A novel extension of the Shtarkov sum to fixed
design regret was introduced in [42] and to the sequential minimax
regret in [37], where the contextual Shtarkov sum is introduced.



5
Minimax Regret with Log-loss

In this chapter, we present novel results for minimax regret with logarith-
mic loss (log-loss), as defined in (4.8). We consider only binary-valued
labels Y = {0, 1}, for which the log-loss can be equivalently written as

ℓ(ŷt, yt) = −yt log(ŷt)− (1− yt) log(1− ŷt),

where yt ∈ Y and ŷt ∈ [0, 1] is the prediction, interpreted as the
probability assigned to label 1. Our main tool in this section will be
the Shtarkov sum, already discussed in Chapter 4, which we evaluate
precisely to obtain tight bounds on the minimax regret.

5.1 Bayesian Predictor

We begin with a general Bayesian predictor for log-loss, which we will
later refine to obtain tighter bounds. Let G be any reference class of
(sequential) functions mapping X ∗ → [0, 1], where X ∗ denotes finite
sequences over X , and let Y = {0, 1}. Let W be an index set for G, and
let µ be an arbitrary finite measure over W. The standard Bayesian
predictor with prior µ is presented in Algorithm 5.1. Based on this
algorithm, the following two lemmas are used to establish most of the
upper bounds presented in this chapter.

42
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Algorithm 5.1 Bayesian predictor
Input: Reference class G := {gw : w ∈ W} with index set W and prior
µ over W

1: Set pw(y0 | x0) = 1 for all w ∈ W.
2: for t = 1, · · · , T do
3: Receive feature vector xt
4: Make prediction with the following equation:

ŷt =
∫

W gw(xt)pw(yt−1 | xt−1)dµ∫
W pw(yt−1 | xt−1)dµ . (5.1)

5: Receive label yt
6: For all w ∈ W, update:

pw(yt | xt) = e−ℓ(gw(xt),yt)pw(yt−1 | xt−1). (5.2)

7: end for

Lemma 5.1. Let G be a collection of functions gw : X ∗ → [0, 1], w ∈ W .
Let ŷt be the Bayesian prediction rule (5.1) as in Step 4 of Algorithm 5.1
with prior µ. Then, for any xT and yT we have

T∑
t=1

ℓ(ŷt, yt) ≤ − log
∫

W pw(yT | xT )dµ∫
W 1dµ

where

pw(yT | xT ) = e−
∑T

t=1 ℓ(gw(xt),yt) =
T∏
t=1

gw(xt)yt(1− gw(xt))1−yt

and ℓ is the log-loss as in equation (4.8).

Proof. We first observe that for any y ∈ {0, 1} we have e−ℓ(·,y) is concave
over [0, 1]. Let

λt−1(w) = pw(yt−1 | xt−1)∫
W pw(yt−1 | xt−1)dµ.

Note that λt−1(w) forms a probability density over W w.r.t. µ. By
definition of ŷt, we have ŷt = Eλt−1 [gw(xt)], where the expectation is
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over the density of λt−1(w). Therefore, by Jensen’s inequality and the
update procedure as in item 6 of Algorithm 5.1, we have

e−ℓ(ŷt,yt) = e−ℓ(E[gw(xt)],yt) ≥ E[e−ℓ(gw(xt),yt)] =
∫

W pw(yt | xt)dµ∫
W pw(yt−1 | xt−1)dµ.

By telescoping the sum, we find

e−
∑T

t=1 ℓ(ŷt,yt) ≥
∫

W pw(yT | xT )dµ∫
W 1dµ .

This implies
T∑
t=1

ℓ(ŷt, yt) ≤ − log
∫

W pw(yT | xT )dµ∫
W 1dµ

and completes the proof.

The following lemma bounds the regret under log-loss of finite
classes.
Lemma 5.2. For any finite class of experts G, we have regT (G) ≤ log |G|.
Proof. Let µ(w) = 1

|W| as in Lemma 5.1 and ŷt be the Bayesian predictor
with input G and µ. Then
T∑
t=1

ℓ(ŷt, yt) ≤ − log
∫

W pw(yT | xT )dµ∫
W 1dµ

= − log
∫

W
pw(yT | xT )dµ+ log 1

= − log
∫

W
pw(yT | xT )dµ

≤ − log pw∗(yT | xT ) + log |W|, w∗ maximizes pw(yT | xT )

=
T∑
t=1

ℓ(gw∗(xt), yt) + log |G|, since |W| = |G|.

This concludes the proof.

We should remark that the regrets established in this section hold
for (sequential) function classes G, which generate outputs using the
entire feature history xt at each time step t. This is in contrast to the
static function class H discussed earlier, which generates outputs based
only on the current feature xt. This notion is also sometimes referred
to as dynamic functions as in [43].
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5.2 General Upper Bound via Smoothing

We begin by introducing a notion of a covering, called the global se-
quential cover, which was implicitly used in [24, Section 6.1] to derive
regret bounds under the absolute loss, and traces back to ideas in [35].

Definition 5.1 (Global sequential covering). For any H ⊂ [0, 1]X , we say
class G of functions map X ∗ → [0, 1] is a global sequential α-covering
of H at scale α if for any xT ∈ X T and h ∈ H, there exists g ∈ G such
that ∀t ∈ [T ],

|h(xt)− g(xt)| ≤ α.

Throughout we assume that 0 ≤ α ≤ 1.

To apply the global sequential cover we need to modify the standard
Bayesian Algorithm 5.1 to the so called smooth truncated Bayesian
predictor presented in Algorithm 5.2.

Algorithm 5.2 Smooth truncated Bayesian predictor
Input: Reference class G with index set W and prior µ over W, and
truncation parameter α.

1: Let pw(y0 | x0) = 1 for all w ∈ W
2: for t = 1, · · · , T do
3: Receive feature xt
4: For all w ∈ W, set

g̃w(xt) = gw(xt) + α

1 + 2α (5.3)

5: Make prediction

ŷt =
∫

W g̃w(xt)pw(yt−1 | xt−1)dµ∫
W pw(yt−1 | xt−1)dµ (5.4)

6: Receive label yt
7: For all w ∈ W, update:

pw(yt | xt) = e−ℓ(g̃w(xt),yt)pw(yt−1 | xt−1). (5.5)

8: end for
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We are now in the position to state our first main general finding.

Theorem 5.3. If, for any α > 0, there exists a global sequential α-
covering set Gα of H, then for log-loss, the minimax regret satisfies

regT (H) ≤ inf
0<α<1

{T log(1 + 2α) + log |Gα|} ≤ inf
0<α<1

{2αT + log |Gα|} ,
(5.6)

and this bound is achieved by Algorithm 5.2.

The proof is based on the following key lemma.

Lemma 5.4. Suppose H has a global sequential α-covering set G for
some α ∈ [0, 1]. Then, there exists a truncated set G̃ of G with |G̃| = |G|
such that for all xT , yT and h ∈ H there exists a g̃ ∈ G̃ satisfying

ph(yT | xT )
pg̃(yT | xT ) ≤ (1 + 2α)T , (5.7)

where

ph(yT | xT ) =
T∏
t=1

h(xt)yt(1− h(xt))1−yt

and

pg̃(yT | xT ) =
T∏
t=1

g̃(xt)yt(1− g̃(xt))1−yt .

Proof. We construct the set G̃ as in Algorithm 5.2. For any g ∈ G, we
define a smooth truncated function g̃ such that for any xt ∈ X ∗

g̃(xt) = g(xt) + α

1 + 2α .

We introduce the following short-hand notation; for any function f , we
define f(yt) = f(xt)yt(1 − f(xt))1−yt . For any xT , yT , and h ∈ H, let
g ∈ G be a α-covering of h and g̃ be the truncated function as defined
above. Now, the key observation is that for any yt ∈ {0, 1}, we have
h(yt) ≤ g(yt) + α since g α-covers h. This implies that

h(yt)
g̃(yt)

≤ g(yt) + α

(g(yt) + α)/(1 + 2α) = 1 + 2α.
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Therefore, we have

ph(yT | xT )
pg̃(yT | xT ) =

T∏
t=1

h(yt)
g̃(yt)

≤ (1 + 2α)T .

This completes the proof of Lemma 5.4.

Proof of Theorem 5.3. We show that for any 0 < α < 1 if an α-covering
set Gα exists, then one can achieve the claimed bound for such an α.
To do so, we run the Smooth truncated Bayesian Algorithm 5.2 on Gα
with uniform prior and truncation parameter α. We denote by G̃α to
be the truncated class of Gα as in Lemma 5.4. We now fix xT , yT . By
Lemma 5.2 (with G being G̃α), we have
T∑
t=1

ℓ(ŷt, yt) ≤ inf
g̃∈G̃α

T∑
t=1

ℓ(g̃(xt), yt)+log |G̃α| = inf
g̃∈G̃α

T∑
t=1

ℓ(g̃(xt), yt)+log |Gα|,

the last equality follows from |Gα| = |G̃α|. Since ∑T
t=1 ℓ(f(xt), yt) =

− log pf (yT | xT ) for any function f , then by Lemma 5.4 we conclude
that

inf
h∈H

T∑
t=1

ℓ(h(xt), yt) ≥ inf
g̃∈G̃α

T∑
t=1

ℓ(g̃(xt), yt)− T log (1 + 2α) .

The result follows by combining the inequalities and noticing that
log(1 + x) ≤ x for all x ≥ −1.

We will demonstrate how Theorem 5.3 can be applied in various
contexts to obtain tight regret upper bounds by appropriately designing
the covering set G in the following sections.

5.3 Lipschitz Parametric Class.

We now consider a Lipschitz parametric function class. Given a function
f :W ×X → [0, 1], define the following class

Hf = {f(w, ·) ∈ [0, 1]X : w ∈ W},

where w ∈ W is often a d-dimensional vector in Rd.
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We will assume that f(w,x) is L-Lipschitz on w for every x, where
L ∈ R+. More formally, ∀w1,w2 ∈ W and x ∈ X we have

|f(w1,x)− f(w2,x)| ≤ L||w1 −w2||,

where || · || is some norm on W. For example, if we take W ⊂ Rd then
the norm can be ℓ1, ℓ2 or ℓ∞ norm. For any specific norm || · ||, we write
B(R) for the ball under such norm with radius R in W. In particular,
we denote by Bds (R) the ball in Rd of radius R under ℓs norm centered
at the origin.

Theorem 5.5. Let f : Bds(R) × Rd → [0, 1] be a L-Lipschitz function
under ℓs norm. Then

regT (Hf ) ≤ min
{
d log

(2RLT
d

+ 1
)

+ 2d, T
}
. (5.8)

Proof. By L-Lipschitz condition, to find an α-covering in the sense of
Definition 5.1, we only need to find a covering of Bds(R) with radius
α/L. By standard result (see e.g. Lemma 5.7 and Example 5.8 of [44])
we know that the covering size is upper bounded by(2RL

α
+ 1

)d
.

By Theorem 5.3, we find

regT (Hf ) ≤ inf
0<α<1

{
2αT + d log

(2RL
α

+ 1
)}

.

Taking α = d/T , we conclude

regT (Hf ) ≤ d log
(2RLT

d
+ 1

)
+ 2d.

This completes the proof for T ≥ d. The upper bound T is achieved by
predicting 1

2 every time.

Example 5.1. For logistic function f(w,x) = (1 + e−⟨w,x⟩)−1, and
w ∈ Bd2(R) with x ∈ Bd2(1) our result recovers those of [45], but with a
better leading constant (the bound in [45] has a constant 5). Note that,
the result in [46] also provides a sub-optimal constant c ∼ 4. Moreover,
our bounds have a logarithmic dependency on Lipschitz constant L.
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The question arises whether the factor in front of log T can be
improved to d/2 instead of d as discussed in some recent papers [42],
[47], [48]. In Theorem 5.6 below, we show that, in general, it cannot
unless we further strengthen our assumption (see Theorem 5.9). For
the ease of presentation, we only consider the parameters restricted to
ℓ2 norm.

Theorem 5.6. For any d, T,R, L such that T ≫ d log(RLT ), there
exists L-Lipschitz function f : Bd2(R)× Rd → [0, 1] such that

regT (Hf ) ≥ d log
(
RLT

d

)
− d log 64− d log log(RLT ). (5.9)

We need the following two lemmas to prove Theorem 5.6.

Lemma 5.7. Let P be a finite class of distributions over the same
domain Ω. Denote

S =
∑
ω∈Ω

max
p∈P

p(ω)

to be the Shtarkov sum. Then for any estimation rule Φ : Ω → P we
have:

S ≥ |P| ·
(

1−max
p∈P

p ({ω : Φ(ω) ̸= p})
)

Proof. Note that Φ partitions Ω into |P| disjoint parts. For any p ∈ P,
we denote Ωp = {ω ∈ Ω : Φ(ω) = p} to be the partition corresponding
to p. We have:∑

p∈P
p(Ωp) =

∑
ω∈Ω

pω(ω) ≤
∑
ω∈Ω

max
p∈P

p(ω) = S,

where pω ∈ P is the distribution such that ω ∈ Ωpω . This implies

min
p∈P

p(Ωp) ≤
S

|P|
.

The result follows by taking the complements of Ωp.

Lemma 5.8. For any M ≤ eT/8, there exist M vectors v1, v2, · · · , vM ∈
{0, 1}T such that for any i ̸= j ∈ [M ] we have:

T∑
t=1

1{vi[t] ̸= vj [t]} ≥ T/4.
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Proof. This follows from standard packing number estimates of the
Boolean cube, see [44, Example 5.3].

Proof of Theorem 5.6. Let x1, · · · ,xT ∈ Rd be any distinct points. We
will construct a L-Lipschitz function f(w,x) such that the regret re-
stricted only on xT is large. To do so, we consider a maximum packing
M of the parameter space Bd2(R) of radius α/L > 0 (where α is to be
determined latter). Standard volume argument (see Chapter 5 of [44])
yields that

|M | ≥
(
LR

2α

)d
.

Now, we will define a L-Lipschitz functions f(w,x) only on w ∈M
and x ∈ {x1, · · · ,xT }. By Lemma 5.8 (assume for now the conditions
are satisfied), we can find |M | binary vectors V ⊂ {0, 1}T such that any
pair of the vectors has Hamming distance lower bounded by T/4. For
each of the vector v ∈ V , we define a vector u ∈ [0, 1]T in the following
way, for all t ∈ [T ]

1. If v[t] = 0 then set u[t] = 0;

2. If v[t] = 1 then set u[t] = α.

Denote by U be the set of all such vectors u. Note that |U | = M .
For any w ∈ M , we can associate a unique u ∈ U such that for all
t ∈ [T ]

f(w,xt) = u[t].

We now show that f is indeed L-Lipschitz restricted on M for all
xt ∈ {x1, · · · ,xT }. This is because for any w1 ̸= w2 ∈ M we have
|f(w1,xt)− f(w2,xt)| ≤ α by definition of U and ||w1 −w2||2 ≥ α/L
since M is a packing.

We now view the vectors in u ∈ U as a product of Bernoulli distri-
butions with each coordinate t independently sampled from Bern(u[t]).
We show that the sources in U are identifiable. To see this, we note that
for any distinct pairs u1, u2 ∈ U , there exist a set I ∈ [T ] such that u1
and u2 differ on I and |I| ≥ T/4. This further implies that there exists
a set J ⊂ I with |J | ≥ T/8 such that u1 takes all 0 on J and u2 takes
all α on J (or vice versa). We can then distinguish u1, u2 by checking if
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the samples on J are all 0s or not. The probability of making error is
upper bounded by

(1− α)T/8 ≤ e−αT/8.

Since there are only |M |2 such pairs, we have the probability of wrongly
identifying the source upper bounded by

|M |2e−αT/8.

Taking α = 16d log(RLT )
T , the error probability is upper bounded by

(
RLT

32d log(RLT )

)2d
e−2d log(RLT ) ≤

( 1
32d log(RLT )

)2d
≤ 1

2 ,

for sufficient large d, T , where we have use the fact that

|M | ≤ ( RLT

32d log(RLT ))d.

Note that we only showed a lower bound on |M | before, but this is not
a problem since we can always remove some points from M to make
the upper bound holds as well.

By Lemma 5.7, we know that the Shtarkov sum of sources in U is
lower bounded by |M |/2. Therefore, we have

regT (Hf ) ≥ reg∗
T (Hf ) ≥ log(|M |/2)

≥ d log (RLT/d)− d log 64− d log log(RLT ).

Now, we have to extend the function to the whole set Bd2(R) and
keep the L-Lipschitz property. This follows from a classical result in
real analysis (see [49, Theorem 1]) by defining for all w ∈ Bd2(R) and
xt ∈ {x1, · · · ,xT }

f(w,xt) = sup
w′∈M

{f(w′,xt)− L||w−w′||2}.

For the x ̸∈ {x1, · · · ,xT }, we can simply let f(w,x) = 0 for all w.
Finally, we need to check that the condition of Lemma 5.8 holds for

our choice of α, this is satisfied by our assumption T ≫ d log(RLT ).



52 Minimax Regret with Log-loss

5.3.1 Lipschitz Class with Bounded Hessian.

As we have demonstrated in Theorem 5.6 the leading constant 1 of the
regret for Lipschitz parametric classes can not be improved in general.
We now show that for some special function f ∈ Hf one can improve
the constant to 1

2 , as already noticed in [42], [47], [48]. For any function
f : Rd × Rd → [0, 1], we say the Hessian of log f is uniformly bounded
on X ⊂ Rd, if there exists a constant C such that for any w ∈ Rd and
x ∈ X and y ∈ {0, 1} we have

sup
||u||2≤1

|uT∇2
w log f(w,x)y(1− f(w,x))1−yu| ≤ C,

where ∇2
w is the Hessian at w.

Theorem 5.9. Let f : Rd × Rd → [0, 1] be a function such that the
Hessian of log f is uniformly bounded by C on X . Let

Hf = {f(w,x) : w ∈ W,x ∈ X}

be such that f is restricted to some compact set W ⊂ Rd. Then for any
ϵ > 0,

regT (Hf ) ≤ log Vol(W∗)
Vol(Bd2(ϵ))

+ 1
2CTϵ

2 + log 2. (5.10)

where W∗ = {w + u | w ∈ W, u ∈ Bd2(ϵ)}, Vol(·) is volume under
Lebesgue measure. In particular, for W = Bd2(R) and ϵ =

√
d/CT , we

have

regT (Hf ) ≤ d

2 log
(

2CR2T

d
+ 2

)
+ d/2 + log 2.

Note that, Theorem 5.9 subsumes the results of [47], [50], where
the authors considered the function of form f(⟨w,x⟩) and requires that
the second derivative of log f is bounded, see also [9, Chapter 11.10].
However, the KL-divergence-based argument of [50] can not be used
directly in the setup of Theorem 5.9 since we do not assume the function
f has a linear structure. Our main proof technique of Theorem 5.9 is a
direct application of Lemma 5.1 and an estimation of the integrals via
Taylor expansion.
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Proof of Theorem 5.9. The proof resembles that of [45] but running
the Bayesian predictor (Algorithm 5.1) over W∗ instead of W with G
being Hf and µ being Lebesgue measure. Let xT , yT and ŷT be the
feature, label and predictions of the Bayesian predictor respectively. By
Lemma 5.1

T∑
t=1

ℓ(ŷt, yt) ≤ − log
∫

W∗ pw(yT | xT )dµ∫
W∗ 1dµ , (5.11)

where µ is the Lebesgue measure and

pw(yT | xT ) =
T∏
t=1

f(w,xt)yt(1− f(w,xt))1−yt .

We now write ht(w) def= log f(w,xt)yt(1 − f(w,xt))1−yt to simplify
notation. It is easy to see that ℓ(f(w,xt), yt) = −ht(w). Let w∗ be the
point in W that maximizes

h(w) def=
T∑
t=1

ht(w).

Let u = ∇h(w∗) be the gradient of h at w∗. By Taylor theorem, we
have for any w ∈ W∗

h(w) = h(w∗) + uτ (w−w∗) + 1
2(w−w∗)τ∇2

w′h(w′)(w−w∗),

where w′ is a convex combination of w and w∗ and uτ is the transpose
of u.

Now, the key observation is that for any point w such that uτ (w−
w∗) ≥ 0 we have

h(w) ≥ h(w∗)+1
2(w−w∗)τ∇2

w′h(w′)(w−w∗) ≥ h(w∗)−1
2CT ||w−w∗||22,

(5.12)
where the last inequality follows from our assumption about the bounded
Hessian of log f . Let B be the half ball of radius ϵ centered at w∗ such
that for all w ∈ B we have uT (w−w∗) ≥ 0. By (5.12), for all w ∈ B

h(w) ≥ h(w∗)− 1
2CTϵ

2. (5.13)
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Note that B ⊂ W∗. Then using above observations we arrive at

T∑
t=1

ℓ(ŷt, yt) ≤ − log
∫

W∗ pw(yT | xT )dµ∫
W∗ 1dµ (5.14)

≤ − log
∫
B pw(yT | xT )dµ∫

W∗ 1dµ , since B ⊂ W∗ (5.15)

≤ − log e
−CTϵ2/2 ∫

B pw∗(yT | xT )dµ∫
W∗ 1dµ (5.16)

= − log pw∗(yT | xT ) + CTϵ2/2− log Vol(B)
Vol(W∗) (5.17)

= − log pw∗(yT | xT ) + CTϵ2/2− log
1
2Vol(Bd2(ϵ))

Vol(W∗) (5.18)

=
T∑
t=1

ℓ(f(w∗,xt), yt) + log Vol(W∗)
Vol(Bd2(ϵ))

+ CTϵ2/2 + log 2.

(5.19)

This completes the proof of the general bound. The last part of the
theorem follows from the fact that if W = Bd2(R) then W∗ = Bd2(R + ϵ)
and noticing that

Vol(Bd2(R+ ϵ))
Vol(Bd2(ϵ))

≤ (R/ϵ+ 1)d

as desired.

Remark 5.1. When compared to the technique in [51], Theorem 5.9
does not assume that the gradient critical point of the loss is zero
(e.g., the minimum may occur on the boundary). This is why we need
to restrict to the half ball B in order to discard the linear term of
Taylor expansion in Equation (5.13). Moreover, in the proof we work
directly on the continuous space instead of a discretized cover, giving
an efficient algorithm provided the posterior is efficiently samplable (by
e.g., assuming some log-concavity of f as in [45]).

We complete this section with the following lower bound for gener-
alized linear functions under unit ℓs balls.
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Theorem 5.10. Let f : R → [0, 1] be an arbitrary function such that
there exists c1, c2 ∈ (0, 1) and for all r > 0 we have [c1 − c2d

−r, c1 +
c2d

−r] ⊂ f([−d−r, d−r]) for all sufficiently large d. Let

Hf = {f(⟨w,x⟩) : w ∈ Bds(1),x ∈ Bds(1)}

where s > 0. Then

regT (Hf ) ≥ d

2 log
(

T

d(s+2)/s

)
−O(d) (5.20)

where O hides some absolute constant that is independent of d, T .

Example 5.2 (Logistic function). Note that for the logistic function
f(x) = (1 + e−x)−1 Theorem 5.10 holds with c1 = 1

2 and c2 = 1
5 .

Therefore,
1. If s = 1, then

regT (Hf ) ≥ d

2 log
(
T

d3

)
−O(d).

2. If s = 2, then

regT (Hf ) ≥ d

2 log
(
T

d2

)
−O(d).

3. If s =∞, then

regT (Hf ) ≥ d

2 log
(
T

d

)
−O(d).

This recovers all the lower bounds from [47]. We note that a simple
sufficient condition for Theorem 5.10 to hold is to require f ′(0) ̸= 0 if
f(x) is differentiable.

Remark 5.2. We should remark that the leading constants of Theo-
rem 5.9 and 5.10 are matching only if d growth sub-polynomially w.r.t.
T (e.g., when d = e

√
log T ). However, when d growth polynomailly w.r.t.

T the leading constants will no longer match, though the bounds are
still having the same asymptotic rate Θ(d log T ) for d≪ T s/s+2. More-
over, for s = 2 the condition d≪

√
T cannot be relaxed since for any

function f with log f Lipschitz one can achieve a Õ(
√
T ) upper bounds

independent of dimension d, see [45, Example 2].
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The proof of Theorem 5.10 is based on the following technical lemma.

Lemma 5.11. The following inequality holds, for r > 0:∑
y∈{0,1}T/d

sup
w∈[c1−c2d−r,c1+c2d−r]

P (y | w) ≥ Ω(
√
T/d2r+1), (5.21)

where P (y | w) = wk(1− w)T/d−k with k being the number of 1s in y.

Proof. By Stirling approximation, for all k ∈ [T/d], there exists a
constant C ∈ R+ such that

B(k, T/d) def=
(
T/d

k

)(
k

T/d

)k (
1− k

T/d

)T/d−k

≥ C
√

T/d

k(T/d− k) .

Since P (y | w) achieves maximum at w = k · d/T , we have

∑
y∈{0,1}T/d

sup
w∈[c1−c2d−r,c1+c2d−r]

p(y | w) ≥
c1T/d+c2T/dr+1∑

k=c1T/d−c2T/dr+1

B(k, T/d).

Therefore, for each k in the above summation, we have that

B(k, T/d) ≥ 1√
k(T/d− k)

≥
√

(c1 + c2d−r)(1− c1 − c2d−r)d/T.

Therefore, the LHS of (5.21) is lower bounded by

C
√

(c1 + c2d−r)(1− c1 − c2d−r)
√
T

d

2c2
dr

= Ω(
√
T/d2r+1)

for sufficient large d.

Proof of Theorem 5.10. Now we are ready to prove Theorem 5.10. We
choose a particular xT : We split the xT into d blocks each with
length of T/d. With that, the ith part of the inputs and the out-
puts are denoted by x(i) = (x(T/d)·(i−1)+1, · · · ,x(T/d)·i) and y(i) =
(y(T/d)·(i−1)+1, · · · , y(T/d)·i), respectively. For any any xt we set x(i) = ei
where ei is the standard d base of Rd with 1 in position i and 0s other-
wise. Note that, with this choice of xts, we have ⟨w,xt⟩ = wi, where wi
is the ith coordinate of w and xt ∈ x(i).
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We will lower bound r∗
T (Hf | xT ), which will automatically give

a lower bound on regT (Hf ). We only need to compute the following
Shtarkov sum

ST (Hf |xT ) =
∑

yT ∈{0,1}T

sup
w∈Bd

s (1)

d∏
i=1

Pf (y(i)|wi), (5.22)

where Pf (y(i)|wi) = f(wi)ki(1− f(wi))T/d−ki with ki being the number
of 1s in y(i). We observe

ST (Hf |xT ) ≥
∑

yT ∈{0,1}T

d∏
i=1

sup
wi∈[−d−1/s,d−1/s]

Pf (y(i)|wi)

=
d∏
i=1

∑
y(i)∈{0,1}T/d

sup
wi∈[−d−1/s,d−1/s]

Pf (y(i)|wi)

=
( ∑

y∈{0,1}T/d

sup
w∈[−d−1/s,d−1/s]

Pf (y|w)
)d

≥

 ∑
y∈{T/d}

sup
w∈[c1−c2d−1/s,c1+c2d−1/s]

P (y | w)

d

where P (y | w) is as in Lemma 5.11 and the last inequality holds since
[c1 − c2d

−1/s, c1 + c2d
−1/s] ⊂ f([d−1/s, d−1/s]) by the assumption. Now,

Lemma 5.11 implies that

ST (Hf | xT ) ≥ cd
(

T

d(s+2)/s

)d/2
,

where c is some absolute constant that is independent of d, T . We
conclude

regT (Hf ) ≥ reg∗
T (Hf ) ≥ logST (Hf |xT ) ≥ d

2 log
(

T

d(s+2)/s

)
−O(d)

which completes the proof.

5.3.2 Tight Constants Beyond Bounded Hessian

In the preceding sections, we analyzed the Bayesian predictor under a
uniform prior—equivalently, a uniform ϵ-cover—on the parameter space.
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In this section, we show that for certain hypothesis classes, strictly better
regret bounds can be achieved by averaging over a carefully chosen
non-uniform cover. This phenomenon is well known in information
theory (cf. [52]) for the fixed-design regret. However, for the sequential
case, the situation is more complicated, since we need to deal with the
xT without knowing it in advance.

We start with the following simple mixture class of two hypotheses :

Lemma 5.12. Let h1, h2 be arbitrary functions map X → [0, 1]. We
define a function class H = {hw = wh1 + (1− w)h2 : w ∈ [0, 1]}. Then

regT (H) ≤ 1
2 log T + log log T +O(1).

Proof. For any given xT , yT , we denote h̃i(xt) = (1− yt)(1− hi(xt)) +
ythi(xt) for i ∈ {1, 2}. We also denote h̃w(xt) = wh̃1(xt)+(1−w)h̃2(xt).
The log-loss over xT , yT against hw is

T∑
t=1

ℓ(hw(xt), yt) =
T∑
t=1
− log h̃w(xt).

Let gt(w) = − log h̃w(xt), we have

g′′
t (w) = (h̃1(xt)− h̃2(xt))2

h̃w(xt)2 .

We now consider two cases:

1. If h̃1(xt) ≥ h̃2(xt), we have (using elementary algebra):

|g′′
t (w)| = 1

(w + h̃2(xt)/(h̃1(xt)− h̃2(xt)))2 ≤
1
w2 .

2 If h̃1(xt) ≤ h̃2(xt), we have (using elementary algebra):

|g′′
t (w)| = 1

(1− w + h̃1(xt)/(h̃2(xt)− h̃1(xt)))2 ≤
1

(1− w)2 .

Let E be a non-uniform cover that is constructed as follows. Let e0 = 1
T ,

we define recursively

en =
(

1 +
√

1
T

)
en−1.
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LetN be the maximum number for which eN ≤ 1
2 . It is easy to verify that

N ≤ O(
√
T log T ). We define E = {en, 1−en : n ∈ {0, · · · , N}}∪{0, 1}.

By construction of E, we have for any w ∈ [1/T, 1− 1/T ] there exists
e ∈ E such that

|e− w| ≤ min{w
√

1/T , (1− w)
√

1/T}.

Let w∗ ∈ [0, 1] be the point that achieves the minimal of g(w) =∑T
t=1 gt(w). We have either w∗ = 0, 1 or g′(w∗) = 0. For the latter case,

we have by Taylor expansion, for all e (where w′ is convex combination
of e, w∗):

g(e) = g(w∗) + g′′(w′)(e− w∗)2.

Taking e ∈ E be such that |e − w∗| ≤ min{w∗√1/T , (1 − w∗)
√

1/T}
(assume for now w∗ ∈ [1/T, 1− 1/T ]) and using the property for g′′(w)
above, we have

g(e) ≤ g(w∗) +O(1).

By applying the Bayesian algorithm over E with uniform prior, we
obtain the following regret bound

regT (H) ≤ log |E|+O(1) = 1
2 log T + log log T +O(1).

Finally, we observe that the case for w∗ ≤ 1/T or ≥ 1− 1/T does not
affect the result, since by taking e = 1/T or 1 − 1/T (respectively)
guarantees that g(e) ≤ g(w∗) +O(1).

Note that a uniform cover as in Theorem 5.5 would only give a log T
term here, not the improved 1

2 log T rate.
Equipped with Lemma 5.12, we prove the following general result:

Theorem 5.13. Let {h1, . . . , hs} be any s functions and define

H =


s∑
j=1

wjhj : wj ∈ [0, 1],
s∑
j=1

wj = 1

 .
Then

regT (H) ≤ s− 1
2 log T + (s− 1) log log T +O(s− 1).
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Proof. We define a recursive representation of mixture functions:

G(hj+1, wj) =

(1− wj)hj+1 + wjG(hj−1, wj−1), if j ≥ 2,
w1h1 + (1− w1)h2, if j = 1.

Then the hypothesis class can be written as

H =
{
G(hs, ws−1) : wj ∈ [0, 1] for all j

}
.

Let E be the covering set from Lemma 5.12. Define the approximate
hypothesis class

H̃ =
{
G(hs, es−1) : ej ∈ E for all j

}
.

Since |E| = O(
√
T log T ), we have

log |H̃| ≤ s− 1
2 log T + (s− 1) log log T.

Let L(h) = ∑T
t=1 ℓ(h(xt), yt) be the cumulative log-loss. We will

prove by induction on s that

inf
h̃∈H̃

L(h̃) ≤ inf
h∈H

L(h) +O(s− 1). (5.23)

The base case s = 2 is exactly Lemma 5.12. Assume the result holds
for s− 1. Let w∗ be the sequence of weights minimizing L(h) over H,
and choose es−1 ∈ E such that

L(G(hs, w∗
1, . . . , w

∗
s−2, es−1)) ≤ L(G(hs, w∗)) +O(1).

Note that this function can be rewritten as

G(hs, w∗
1, . . . , w

∗
s−2, es−1) = G(h̃s−1, w∗

1, . . . , w
∗
s−2),

where each h̃j = (1 − es−1)hs + es−1hj . By the induction hypothesis,
there exist e1, . . . , es−2 ∈ E such that

L(G(h̃s−1, e1, . . . , es−2)) ≤ L(G(h̃s−1, w∗
1, . . . , w

∗
s−2)) +O(s− 2).

Finally, observe that

L(G(h̃s−1, e1, . . . , es−2)) = L(G(hs, e1, . . . , es−1)).

This completes the proof of inequality (5.23).
Applying the Bayesian aggregation over H̃ with a uniform prior

yields the stated regret bound.
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Corollary 5.14. Let f = ⟨w,x⟩ with w ∈ Bd1(1) ∩ [0, 1]d and x ∈ [0, 1]d.
Then we have

regT (Hf ) ≤ d

2 log T + d log log T +O(d).

Proof. Note that Hf is a convex combination of ⟨ej ,x⟩ with j ∈ [d]
and the all-zero valued function, where ej is the standard base of Rd
with value 1 at position j and zeros elsewhere. The result follows by
Theorem 5.13 by taking s = d+ 1.

Remark 5.3. Note that the function log f in Corollary 5.14 is neither
Lipschitz nor has bounded Hessian, yet we can still achieve a 1

2 leading
constant. It is worth noting that using the result in [9, Chapter 9.10]
and the expected majorizing martingale characterization for rT under
Lipschitz loss as established in [24], one can show that the 1

2 constant can
be also achieved if we only assume log f is Lipschitz (i.e., no requirement
on Hessian). This does not apply to the case in Corollary 5.14, since in
our case the function log f is not even Lipschitz.

5.4 Large Growth.

We now introduce results for the setting where the dimension d grows
faster than the time horizon T . This is achieved by bounding the size
of the global sequential covering (see Definition 5.1) using the notion of
the sequential fat-shattering dimension.

We begin by introducing the definition of the sequential fat-shattering
dimension from [24] (see also Section 2.2).

Definition 5.2 (Sequential Fat-Shattering). : Let H ⊂ [0, 1]X . We say
a X -valued binary tree τ : ⋃di=0{0, 1}i → X is α-fat-shattered by H,
witnessed by a R-valued binary tree s : ⋃di=0{0, 1}i → R, if for any
ϵd ∈ {0, 1}d, there exists h ∈ H such that:

1. If ϵt = 0, then h(τ(ϵt−1)) ≤ s(ϵt−1)− α;

2. If ϵt = 1, then h(τ(ϵt−1)) ≥ s(ϵt−1) + α.

Example 5.3. We illustrate the sequential α-fat-shattering dimension
with an example below.
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Shattering Tree

x1

x2

x4 x5

x3

x6 x7

0 x1

x2

x5

1

Witness Tree

s1

s2

s4 s5

s3

s6 s7

−α s1

s2

s5

+α

Consider a path {0, 1}, the α-fat shattering ensures ∃h ∈ H such that:
(1) h(x1) ≤ s1−α and (2) h(x2) ≥ s2+α.

Definition 5.3. The sequential α-fat shattering dimension ofH is defined
to be the maximum number d(α) such that H α-fat shatters a tree
τ of depth d := d(α). We also write sfatα(H) =: d(α) if we want to
emphasize that the fat dimmension depdends on H.

In the below lemma, we present an upper bound for the cardinally
of the global covering set with algorithmically constructed cover set Gα,
see [24, Section 6.1] for proof.

Lemma 5.15. Let H be any class X → [0, 1] and d(α) be the sequential
α-fat shattering dimension of H. Then there exists a global sequential
α-covering set Gα of H as in Definition 5.3 such that

|Gα| ≤
d(α/2)∑
t=0

(
T

t

)⌈ 1
α

⌉t
≤
⌈
T

α

⌉d(α/2)+1
. (5.24)

Example 5.4. By [24] we know that the sequential α-fat shattering
number of linear functions f(w,x) = |⟨w,x⟩| with w,x ∈ Bd2(1) is of
order Õ(α−2) where in Õ we hide a polylog factor. Lemma 5.15 implies
that the global sequential α-covering number is upper bounded by⌈(T )

(α)

⌉Õ(α−2)
.

By Theorem 5.3, we have

regT (Hf ) ≤ inf
0<α<1

{
2αT + Õ

( 1
α2

)}
≤ Õ(T 2/3),

by taking α = T−1/3. This bound is independent of the data dimension
d.
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Remark 5.4. Observe that for any class H with sequential fat-shattering
dimension of order α−s one can achieve a regret upper bound of order
Õ(T s/s+1) by Theorem 5.3. We refer to [24], [53] for the estimations of
the sequential fat-shattering dimension of a variety of classes.

We now present the following general lower bound:

Theorem 5.16. For any s ≥ 1, we define

Ds =
{

p ∈ [0, 1]T :
T∑
t=1

pst ≤ 1
}
.

We can view the vectors in Ds as functions mapping [T ]→ [0, 1]. Then

regT (Ds) ≥ reg∗
T (Ds) ≥ Ω(T s/s+1). (5.25)

Proof. By Theorem 4.3, it is sufficient to compute the Shtarkov sum.
For any yT ∈ {0, 1}T with k 1s, we claim that

sup
p∈Ds

p(yT ) = 1
kk/s

,

where

p(yT ) =
T∏
t=1

pyt
t (1− pt)1−yt .

To see this, we use a perturbation argument. Denote I to be the positions
in yT that takes value 1 and let |I| = k. For any p such that p(yT ) is
maximum, we must have pj = 0 for all j ̸∈ I. Suppose otherwise, we
then can move some probability mass on pj to some pi < 1 with i ∈ I,
which will increase the value of p(yT ), thus a contradiction. Now, we
need to show that ∏

i∈I
pi ≤

1
kk/s

,

this follows easily by AM-GM (i.e., arithmetic mean vs geometric mean)
inequality since ∑i∈I p

s
i ≤ 1 and it is an equality when pi = 1

k1/s for all
i ∈ I. Now, the Shtarkov sum can be written as

T∑
k=0

(
T

k

)
1
kk/s

. (5.26)
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To find a lower bound, we only need to estimate the maximum term in
the summation. We have

max
k

(
T

k

)
1
kk/s

≥ max
k

T k

k(1+1/s)k ≥ e
s+1
s·e T

s/s+1
,

where the last inequality follows by taking k = 1
eT

s/s+1, and we also
use the fact that (

T

k

)
≥ T k

kk
.

Therefore, we have

reg∗
T (Ds) ≥

s+ 1
s · e

T s/s+1 = Ω(T s/s+1)

which completes the proof.

To see why Theorem 5.16 implies a lower bound for f(w,x) =
|⟨w,x⟩| with d ≥ T , as in Example 5.4, we take w,x ∈ BT2 (1) (i.e., with
d = T ) and define xt = et with et being the standard base of RT that
takes value 1 at position t and zeros otherwise. Note that the functions
of Hf with f(w,x) = |⟨w,x⟩| restricted on xT is exactly D2. Then

regT (Hf ) ≥ reg∗
T (Hf ) ≥ reg∗

T (D2) ≥ Ω(T 2/3)

and this is a matching lower bound of Example 5.4. Note that, it is
proved in [54] that for function f(w,x) = ⟨w,x⟩+1

2 , one can achieve the
regret of form Õ(

√
T )1. Example 5.4 implies that the generalized linear

functions of form f(⟨w,x⟩) can have different regrets with polynomial
gap even with a simple shift on the value (though they have the same
covering number!).

5.4.1 Tighter Lower Bounds for Generalized Linear Functions.

We now provide additional lower bounds through the fixed design
regret. As we have demonstrated in Theorems 5.10 and 5.16 that lower
bounds can be derived by selecting some appropriate xT that maximizes
r∗
T (H | xT ), where we only choose xT to be some combinations of the

1A Ω̃(
√
T ) lower bound for d ≥

√
T can be derived from Theorem 5.10, recover-

ing [54, Lemma 8].
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standard base of Rd. In this section, we present examples where a more
sophisticated selection of xT leads to better lower bounds.

The following theorem shows that the leading constant 1 in The-
orem 5.6 holds even for generalized linear functions with Lipschitz
transform function:

Theorem 5.17. For any s ≥ 1 and d≪ T s/(s+1)/ log T , there exists a
1-Lipschitz function f : [0, 1]→ [0, 1] such that for hypothesis class:

Hf = {f(⟨w,x⟩) : w ∈ Bds(1),x ∈ Bds/(s−1)(1)},

we have
reg∗

T (Hf ) ≥ d log
(

T

d(s+1)/s

)
−O(d log log T ).

The proof of Theorem 5.17 is based on the following technical lemma,
which can be viewed as a correlated version of Lemma 5.8.

Lemma 5.18. There exists a binary sequence b1, b2, · · · , b2T ∈ {0, 1}
such that for any i ̸= j ∈ [T ] we have

T∑
t=1

1{bi+t ̸= bj+t} ≥
T

8 .

Proof. We use the probabilistic method to construct sequence b2T . To
do so, we select B2T uniformly at random from {0, 1}2T and show
that the event of the lemma happens with positive probability. For
any i < j ∈ [T ], we construct an i.i.d. sequence X0, · · · , XT/2−1 with
uniform distribution over {0, 1} such that:

T−1∑
t=0

1{Bi+t ̸= Bj+t} ≥
T/2−1∑
t=0

Xt.

To do so, we maintain an index set I and a set X of random variables,
initial I,X = ∅ and t = 0. For each t ∈ [T − 1], if the index i+ t ∈ I,
we remove i+ t from I and continue to t+ 1; else, we add the indicator
1{Bi+t ̸= Bj+t} to X and j + t to I and continue to t+ 1. Clearly all
the random variables in X are mutually independent and distributed
uniformly over {0, 1}, since we add the indicator to X only when there
is no overlap on the indexes and B2T are i.i.d. random variables (notice



66 Minimax Regret with Log-loss

that if i+ t ̸∈ I then j + t also does not appear in the previous indexes,
since i < j). We claim that |I| ≥ T/2. This follows from the fact that
the conflict period must not be more than the non-conflict period. The
lemma now follows by Chernoff bound, to show that ∑T/2−1

t=0 Xt tightly
concentrates on T/4 and a union bound on all pairs (i, j).

Proof of Theorem 5.17. We partition the xT into d parts each of length
T/d (assume w.l.o.g. that d divides T 2), and denote K = T/d. For
the ith part in the partition, we will select the K features of form
x1ei, · · · , xKei, where xj ∈ [0, 1] and ei is the standard base of Rd with
position i being 1 and zeros elsewhere. Note that all of the parts in the
partition have the same scalars xjs but different vector ei. Clearly, the
value of f(⟨w,x⟩) with x in the ith part depends only on wi, where wi is
the ith coordinate of w. Since w ∈ Bds (1), we may assume that each wi
takes values in the full range [−d−1/s, d−1/s] and selected independently.
Therefore, it is sufficient to construct a function f : [0, 1]→ [0, 1] such
that the class

Q = {f(w · x) : w ∈ [−d−1/s, d−1/s], x ∈ [0, 1]}

has large regret.
Let γ ∈ [0, 1] be a small real number depending on K that is to be

determined later. For any number t ≤ 1/γ, we define zt = (1− γ)t−1.
Let Z = {zt : t ≤ 1/γ}. We now select the x1, · · · , xK to be elements
in Z such that each repeats at least ⌊γK⌋ times (there can be some
elements in Z that repeat more than ⌊γK⌋ times). We also define a
sequence z′

t with t ≤ 2/γ such that z′
t = d−1/s(1−γ)t−1. We observe that

|z′
t − z′

t+1| ≥ d−1/s · e−3 · γ for all t ≤ 2/γ, since (1− γ)2/γ ∼ e−2 for γ
small enough. For any number t ≤ 1/γ, we define wt = d−1/s(1−γ)t−1 ∈
[−d−1/s, d−1/s].

Let M = ⌊1/γ⌋ and b2M be the binary sequence as in Lemma 5.18
with T = M . Define f to be the function over z′

ts with t ≤ 2/γ, such
that f(z′

t) = 0 if bt = 0 and f(z′
t) = d−1/s · e−3 · γ if bt = 1. Clearly, f is

1-Lipschitz over the z′
ts. By Lemma 5.18, for any wi and wj as defined

above with i ̸= j ≤ 1/γ, there are at least M/16 positions t ≤ 1/γ such
2Otherwise, we round T to be some T ′ ≤ T that is divisible by d, this only incurs

a O(d) regret loss.
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that f(wi · zt) take all 0s and f(wj · zt) take all values d−1/s · e−3 · γ (or
vice versa). Note that, any of the wi defines a product distribution over
{0, 1}K such that each coordinate t ≤ K is an independent Bernoulli
random variable with parameter f(wi · xt). Since each zt appears least
⌊γK⌋ times in the xts, we have the probability of wrongly identifying
the source (of the product distribution) with parameters wi and wj
being upper bounded by

(1− d−1/s · e−3 · γ)(M/16)·⌊γK⌋ ≤ e−d−1/s·e−3·γ(K−1/γ−γK)/16.

Taking γ = 64 · e3 · (d1/s · logK)/K and applying a union bound on
all the pairs wi, wj (there are at most K2 such pairs), we can make
error probability upper bounded by 1/2 for sufficiently large K. We
now verify that γ → 0 as K →∞, this is guaranteed by our assumption
that d≪ T s/(s+1)/ log T . By Lemma 5.7, we have

reg∗
T (Q) ≥ log(K/(d1/s logK))−O(1).

Since K = T/d and each of the parts of the partition of xT are inde-
pendent, we have

reg∗
T (H) ≥ d · reg∗

T (Q) ≥ d log
(

T

d(s+1)/s

)
−O(d log log T ).

Finally, by [49, Theorem 1], we can extend f to the whole set [0, 1]
while keep the Lipshitz condition.

Remark 5.5. Note that the condition d≪ T s/(s+1) cannot be relaxed
(upto poly-log factors in general) by Example 5.4. Our results in Theo-
rem 5.17, Theorem 5.5, and Example 5.4 imply an interesting threshold
phenomenon (for the generalized linear functions with worst case Lip-
schitz transform function), i.e., when d ≪ T (s/s+1)−ϵ with ϵ > 0, the
regret grows as Θ(d log T ), while for d ≫ T s/s+1, the regret grows as
Õ(T s/s+1). Moreover the leading constant is exactly 1 for the d log T
term if d is sub-polynomial w.r.t. T (e.g., d = e

√
log T ).

5.4.2 Additional Large Classes.

In this section we consider a general (including non-parametric) class
H = {h ∈ [0, 1]Bd

s (1) : ∀x1,x2 ∈ Bds(1), |h(x1) − h(x2)| ≤ ||x1 − x2||s}
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of all Lipschitz functions mapping from a unit ℓs ball to [0, 1]. We also
assume that the Lipschitz condition is under the norm ℓs as well 3. The
following theorem establishes a lower bound for such function classes
(a matching upper bound – up to poly-log factors – can be derived
using Theorem 5.3 and the classical uniform covering numbers as in [55,
Lemma 5.2], see also [46]).

Theorem 5.19. For any d, T, s ≥ 1 such that d ≪ log T , we let H =
{h ∈ [0, 1]Bd

s (1) : ∀x1,x2 ∈ Bds(1), |h(x1)− h(x2)| ≤ ||x1 − x2||s}. Then

reg∗
T (H) ≥ Ω(T d/d+1).

Moreover, if d ≥ Ω(log T ), then reg∗
T (H) ≥ Ω(T ).

Proof. Let M be a maximum packing of Bds(1) under ℓs norm with
radius T−r, where r = 1

d+1 . Standard volume argument yields that:

|M | ≥ T dr.

Note that the packing number is independent of s, since we are packing
a ℓs ball under the same ℓs norm. Assume w.l.o.g. that |M | = ⌊T dr⌋.
We now select xT to be all the elements in M such that each of them is
repeated at least ⌊T 1−dr⌋ times in xT . We now select a class F ⊂ H of
functions that map M → {0, T−r} such that any two functions differ
by at least ⌊T dr/4⌋ elements in M . By Lemma 5.8, we know that there
are at least 2T dr/8 such functions. By removing some functions, we may
assume that there are ⌊2T dr/16⌋ functions in F .(

1− T−r)⌊T 1−dr⌋·⌊T dr/4⌋/2 ≤ e−T−r·⌊T 1−dr⌋·⌊T dr/4⌋/2 ≤ e−(1/8−o(1))T 1−r
,

where we used the fact that each element in M repeats at least ⌊T 1−dr⌋
times in xT and d≪ log T . In order for a union bound over all pairs in
F to work (there are at most 2T dr/8 such pairs), it is sufficient to have
(since 2 < e):

T dr/8 ≤ T 1−r/8.
This holds when r = 1

1+d . Therefore, by union bound, we have for
sufficient large T , one can identify the sources in F with error probability

3Note that our technique can be generalized to cases when the Lipschitz conditions
are defined in a different norm.
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upper bounded by 1
2 . Invoking Lemma 5.7, we conclude that

reg∗
T (H) ≥ reg∗

T (F) ≥ 1
16 log 2T

d/d+1 − log(2).

By definition, the functions in F restricted on M are 1-Lipschitz under
ℓs norm. By [49, Theorem 1], we can extend them to the whole set
of Bds(1) while keeping the Lipschitz property. The last part of the
theorem follows from the fact that when d = c log T for any constant c,
we have T−1/(1+d) ∼ e−1/c. We can therefore let c be small enough so
that e−1/c ≤ 1

16 , which will allow our argument above to go thorough
(by reducing the size of F by a constant on the exponent) and result
in a regret bound Ω(T d/(d+1)) ≥ Ω(T ). Note that regret is monotone
increasing according to d, thus the result follows.

5.5 Bibliographical Notes

The analysis in this chapter relied on information-theoretic tools, includ-
ing universal source coding for lower bounds [2]–[5], [7], [17], [19], [39]
and sequential covering for upper bounds. In the literature on online
regression under logarithmic loss, much attention has been devoted to
logistic regression. The work [56] studied pointwise regret in the proper
learning setting, where the learner does not observe xt, showing that
the regret is Θ(T 1/3) for d = 1 and O(

√
T ) for d > 1. The regret for

logistic regression was shown to grow as O(d log(T/d)) in [50], and this
was extended in [45]. Matching lower bounds were established in [47].
Precise asymptotics for the fixed design minimax regret appeared in [42],
[48] for the regime d = o(T 1/3).

The study of logarithmic loss for finite expert classes H dates back to
Vovk’s mixability framework [57], [58], where the aggregating algorithm
achieves regret of order log |H|. See [9, Chapter 3.5, 3.6] for an overview.
The extension to infinite classes was treated in [9, Chapter 9.10, 9.11],
where regret bounds were obtained using covering numbers and a
two-stage prediction strategy. For Lipschitz parametric classes with
values bounded away from {0, 1}, the regret was shown to be of order
d/2 log(T/d), while a hard truncation argument yields a bound of order
2d log(T/d) when values approach {0, 1}. These results apply to the
fixed design (simulatable) setting.
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The sequential case was addressed in [54] using sequential covering
numbers developed in [59]. In [46], bounds similar to those in Theo-
rem 5.3 were derived using the self-concordance of the logarithmic loss,
though obtained non-constructively. In [60], smoothing was used to
address the unboundedness of logarithmic loss under i.i.d. features, with
results applicable to average-case regret.

The chapter followed the framework developed in [61] and [62] (see
also recent [23]).



6
Minimax Regret with Lipschitz Losses

In this section, we present results on the minimax regret when the loss
function is both bounded and Lipschitz. Furthermore, we extend our
analysis beyond finite hypothesis classesH, as considered in Theorem 3.4.
The main tool used throughout this chapter is the notion of sequential
covering, introduced in Definition 5.1.

6.1 Absolute Loss

We start with the absolute loss. Let Y = {0, 1} and Ŷ = [0, 1], the
absolute loss function is defined as

ℓ(ŷ, y) = |ŷ − y|.

Observe that |ŷ − y| = Ey′∼Bern(ŷ)[1{y′ ̸= y}], i.e., it measures the ex-
pected miss-classification loss when sampling from a Bernoulli source of
parameter ŷ.

We recall from Theorem 3.4 that for a finite class H the minimax
regret of H under the absolute loss is upper bounded by

regT (H) ≤ O(
√
T log |H|),

which is achieved by the (generalized) EWA Algorithm 3.3.

71
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We now consider hypothesis classes H that are not finite and address
the question: under what conditions are such classes learnable? We begin
with the following example.

Example 6.1. Consider the following class of threshold functions:

Hthres := {ha(x) = 1{x ≥ a} : a, x ∈ [0, 1]}.

For any learner Φ, we construct the following strategy for Nature:

1. At every step t, we select label yt ∈ {0, 1} such that |yt − ŷt| ≥ 1
2 .

2. Select instances xt from the set of dyadic rationals, starting with
x1 = 1

2 and updating (according to learner’s prediction ŷt−1) as:

xt =

xt−1 + 1
2t , if ŷt−1 ≥ 0.5,

xt−1 − 1
2t , else.

This strategy ensures that the cumulative loss incurred by the learner
is at least T/2, while for all t ≤ T , the threshold function hxT +1 with
parameter a = xT+1 satisfies hxT +1(xt) = yt—that is, it incurs zero loss.
Therefore, we conclude that

regT (Hthres) ≥ T/2.

To make the argument even clearer, we illustrate the adversarial
strategy using a tree-based process. Let the learner’s prediction sequence
be {0, 1, 1}. The strategy employed by Nature proceeds as follows:

1
2

3
4

7
8

15
16

13
16

5
8

11
16

9
16

1
4

3
8

7
16

5
16

1
8

3
16

1
16

0 1

x1

When x2 shows up we go down the tree to see:



6.1. Absolute Loss 73

1
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1
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Upon seeing x3 we ended up with the following:
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0

x1

x2

x3

Finally, when x4 arrives we ended up at the following:

1
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9
16

1
4

3
8

7
16

5
16

1
8

3
16

1
16

0 1

0

0

x1

x2

x3

x4

The function hx4(x) := 1{x ≥ 7
16} consistent with all true labels, but

the learner errs at every step.
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6.1.1 Shattering Trees and Littlestone Dimension

We have shown that even for simple threshold functions, achieving
sublinear regret is not possible. This naturally raises the question: What
intrinsic structure of H leads to this failure?

To address this, we introduce the concept of shattering trees, pre-
viously discussed in Section 5.4. Let H ⊂ {0, 1}X be a binary-valued
hypothesis class. A X -valued binary tree of depth d is a mapping

τ :
⋃
i≤d
{0, 1}i → X .

We say that τ is shattered by H if for every ϵd ∈ {0, 1}d, there exists
h ∈ H such that

∀i ≤ d, h(τ(ϵi−1)) = ϵi.

Note that the tree formed by the dyadic rationals is shattered by the
class Hthres.

We now observe a simple fact:

Lemma 6.1. For any binary-valued class H ⊂ {0, 1}X , if there exists a
X -valued binary tree of depth d that can be shattered by H, then:

regT (H) ≥ 1
2 min{d, T}.

Proof. Indeed, it is enough to select the labels opposite to learner’s
prediction, and the instances by following the shattering tree τ , similar
to the threshold function case as discussed in Example 6.1

From the discussion above, it should be clear that we need some
constraints on the class H for it to be learnable. We are now ready to
introduce the Littlestone dimension.

Definition 6.1 (Littlestone Dimension). Let H ⊂ {0, 1}X be a binary-
valued hypothesis class. The Littlestone dimension of H is defined as
the maximum number d such that there exists a X -valued binary tree
of depth d that can be shattered by H.

We will denote Ldim(H) as the Littlestone dimension of H. It is clear
from our previous discussion that regT (H) ≥ 1

2 min{Ldim(H), T}. There-
fore, Littlestone dimension forms an intrinsic barrier for the minimax
regret.
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Example 6.2. We now present several examples of hypothesis classes
H and discuss their corresponding Littlestone dimensions.

1. For the threshold functions Hthres, we have Ldim(Hthres) =∞.

2. For any finite hypothesis class H, it holds that Ldim(H) ≤ log |H|.

3. Consider the class of indicator functions defined by

Hind := {ha(x) := 1{x = a} : x, a ∈ [0, 1]}.

Then Ldim(Hind) = 1.

We have shown that the Littlestone dimension forms a natural lower
bound for the minimax regret. Can we achieve an upper bound as well?

Algorithm 6.1 The Standard Optimal Algorithm (SOA)
1: Initialize H(0) ← H
2: for each time step t = 1, 2, . . . do
3: for each y ∈ {0, 1} do
4: H(t)

y ← {h ∈ H(t−1) : h(xt) = y}
5: end for
6: Predict ŷt ← arg maxy∈{0,1}{Ldim(H(t)

y )}
7: Receive true label yt
8: Update H(t) ← H(t)

yt

9: end for

Lemma 6.2. For any data xT , yT that is realizable w.r.t. a binary-valued
class H, i.e., ∃h∗ ∈ H such that ∀t ≤ T , h∗(xt) = yt, the SOA predictor
enjoys the following mistake bound

T∑
t=1

1{ŷt ̸= yt} ≤ Ldim(H).

Proof. At each round t, if the SOA predictor errs ŷt ≠ yt, it updates
to H(t)

yt = {h ∈ H(t) : h(xt) = yt}. By the definition of Littlestone di-
mension, miny∈{0,1}{Ldim(H(t−1)

y )} ≤ Ldim(H(t−1))−1, so each mistake
decreases the dimension by at least one. Since the initial dimension
is at most Ldim(H) and cannot become negative, the total number of
mistakes is at most Ldim(H).
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6.1.2 Sequential Cover

Note that Lemma 6.2 holds under the realizability assumption. To
extend our analysis to the agnostic setting, we recall the notion of a
sequential cover, as introduced in Definition 5.1, and now specialize it
to binary-valued hypothesis classes.

Definition 6.2 (Sequential Cover). Let H ⊂ {0, 1}X be a binary-valued
class, and G ⊂ {0, 1}X ∗ be a class mapping X ∗ → {0, 1}. We say that
the class G sequentially covers H up to step T if, for any xT ∈ X T and
h ∈ H, there exists g ∈ G such that

∀t ≤ T, g(xt) = h(xt).

We observe that the cover happens locally, depending on any given
xT , unlike the classical uniform cover where each h is covered by a fixed
g. Sequential cover allows the covering function g to depend on xT as
well. Furthermore, infinite classes H can be sequentially covered by a
finite class G. Indeed, consider the class Hind := {ha(x) := 1{x = a} :
x, a ∈ [0, 1]}. For any i ≤ [T ] ∪ {0}, define the sequential function:

gi(xt) =

1{t ≥ i and xt = xi}, if i ̸= 0
0, if i = 0

.

The class G := {gi : i ∈ [T ] ∪ {0}} sequentially covers Hind.
The next lemma is the key to proving the final bounds on regret.

Lemma 6.3. Let H ⊂ {0, 1}X be any binary-valued class. If there exists
a predictor for H that achieves mistake bound errT in the realizable
case, then there exists a sequential cover G of H up to step T such that

log |G| ≤ log
errT∑
i=0

(
T

i

)
≤ O(errT · log T ).

Proof. Let Φ achieve errT mistakes for H in the realizable case. For any
I ⊂ [T ], we recursively define the sequential function

gI(xt) =

Φ(xt, gI(x1), · · · , gI(xt−1)), if t ̸∈ I
1− Φ(xt, gI(x1), · · · , gI(xt−1)), if t ∈ I

.
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The class G := {gI : I ⊂ [T ], |I| ≤ errT } sequentially covers H, since for
any xT and h we can pick I being the time steps where Φ errs. Finally, we
have |G| ≤∑errT

i=0
(T
i

)
by counting the size of {I ⊂ [T ] : |I| ≤ errT }.

This leads to the main result of this section, which establishes tight
minimax regret bound in the agnostic setting.

Theorem 6.4. For any binary-valued class H ⊂ {0, 1}X with finite
Littlestone dimension Ldim(H), the minimax regret of H satisfies

Ω(
√

Ldim(H) · T ) ≤ regT (H) ≤ O(
√

Ldim(H) · T log T ).

Proof. The upper bound is easy. From Lemma 6.2 we know that the
class admits a mistake bound of Ldim(H) in the realizable case. This
implies, by Lemma 6.3, a sequential cover G of size

log |G| ≤ O(Ldim(H) · log T ).

Applying the EWA algorithm over G and using the property of sequential
covering, we deduce, from Theorem 3.3, the regret upper bound

regT (H) ≤ O(
√
T log |G|) ≤ O(

√
Ldim(H) · T log T ).

The lower bound is more intricate. We first prove a simpler Ω(
√
T )

lower bound and assume that |H| ≥ 2. Taking any x ∈ X such that
there exist h0, h1 ∈ H so that hi(x) = i. We now select yT uniformly
over {0, 1}T and select xt := x for all t ≤ T . We have for any prediction
rule Φ that EyT

[∑T
t=1 |ŷt − yt|

]
= T

2 . Let k be the number of 1’s in yT .
We have

inf
h∈{h0,h1}

T∑
t=1
|h(x)− yt| = min{k, T − k}.

Let ϵT be uniform over {±1}T , we have ∑T
t=1 ϵt distributed equally as

2k−T . Note that |k− T
2 | =

T
2 −min{k, T − k}, we have by Khinchine’s

Inequality (Lemma 2.13) that

E[min{k, T − k}] ≤ T

2 −
1√
8
√
T .

Therefore, the regret is lower bounded by
√
T/8.
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The Ω(
√

Ldim(H)T ) lower bound follows by a more careful selection
of the xT . Assume that T is divisible by Ldim(H) (otherwise we truncate
T ). We partition xT , yT into Ldim(H) blocks each of size T

Ldim(H) , and
denote ki as the number of 1’s in the i’th block of yT .

Let τ be a X -valued binary tree of depth Ldim(H) that can be
shattered by H. We now select yT uniformly over {0, 1}T and select xT
by traversing τ :

1. We assign the same value within each block of xT , with the first
block being the value of the root v1 of τ .

2. Let vi be the node in τ for the i’s block. If ki ≥ T
2Ldim(H) we set

vi+1 being left child of vi, and set to the right child otherwise.

By definition of shattering, ∃h ∈ H that achieves min{ki, T
Ldim(H) − ki}

losses for all i simultaneously. The regret is then lower bounded by

Ω(Ldim(H) ·
√
T/Ldim(H)) = Ω(

√
Ldim(H)T )

which completes the proof.

6.2 Minimax Regret for Real-Valued Class

In this section, we consider classes of real-valued functions H ⊂ RX .
To analyze their learnability, we begin by introducing the notion of
sequential Rademacher complexity.

6.2.1 Sequential Rademacher Complexity

We start with the definition of sequential Rademacher complexity.

Definition 6.3 (Sequential Rademacher Complexity). For any real-valued
class H ⊂ RX , we define the sequential Rademacher complexity of H as

sRadT (H) = sup
τ

EϵT
[

sup
h∈H

T∑
t=1

ϵth(τ(ϵt−1))
]
,

where τ : ⋃Ti=0{−1,+1}i → X runs over all X -valued binary trees of
depth T , and ϵT is sampled uniformly over {−1,+1}T .
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Note that the sequential Rademacher complexity is similar to clas-
sical Rademacher complexity, except that the optimizing is over trees
instead of sequences.
Example 6.3. Let Hlin := {hw(x) = ⟨w,x⟩ : w ∈ B2} be the class of
linear functions with weight w lying in a unit L2 ball. Let X := B2 as
well, we have

sRadT (Hlin) ≤
√
T .

Indeed, fix any tree τ and denote xt := τ(ϵt−1), we have:

sRadT (Hlin) = sup
τ

EϵT
[

sup
w∈B2

T∑
t=1

ϵt⟨w,xt)⟩
]

= sup
τ

EϵT
[

sup
w∈B2

〈
w,

T∑
t=1

ϵtxt)
〉]

≤ sup
τ

EϵT

√√√√〈 T∑
t=1

ϵtxt,
T∑
t=1

ϵtxt

〉
,

≤ sup
τ

√√√√EϵT
〈

T∑
t=1

ϵtxt,
T∑
t=1

ϵtxt

〉
, by Jensen’s inequality

≤ sup
τ

√√√√√EϵT

T +
∑

i ̸=j≤T
ϵiϵjxTi xj

, by ∥xt∥2 ≤ 1

=
√
T

as expected.
We now introduce a general approach for reducing the minimax

regret to sequential Rademacher complexity. From Theorem 4.2, we
know that the minimax regret can be reduced to

regT (H) = sup
µ

E
[
T∑
t=1

inf
ŷ∈Ŷ

Et[ℓ(ŷt, yt)]− inf
h∈H

T∑
t=1

ℓ(h(xt), yt)
]

= sup
µ

E
[

sup
h∈H

{
T∑
t=1

inf
ŷ∈Ŷ

Et[ℓ(ŷt, yt)]−
T∑
t=1

ℓ(h(xt), yt)
}]

≤ sup
µ

E
[

sup
h∈H

{
T∑
t=1

Et[ℓ(h(xt), yt)]−
T∑
t=1

ℓ(h(xt), yt)
}]

.
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Denote hℓ(zt) := ℓ(h(xt), yt) where zt = (xt, yt). We obtain the following
upper bound

sup
µ

E
[

sup
h∈H

{
T∑
t=1

Et[hℓ(zt)]− hℓ(zt)
}]

.

We now introduce a tangent sequence z′
1, · · · , z′

T such that z′
t =

(x′
t, y

′
t) with x′

t = xt and y′
t being an i.i.d. copy of yt conditioning on

xt, yt−1. The upper bound can be expresses as

sup
µ

EzT

[
sup
h∈H

{
T∑
t=1

Et[hℓ(z′
t)]− hℓ(zt)

}]
, by definition of z′T

≤ sup
µ

EzT Ez′T

[
sup
h∈H

{
T∑
t=1

hℓ(z′
t)− hℓ(zt)

}]
, by supE ≤ E sup

(a)= sup
µ

Ex1Ey1,y′
1
Eϵ1 · · ·ExT EyT ,y

′
T
EϵT

[
sup
h∈H

{
T∑
t=1

ϵt(hℓ(z′
t)− hℓ(zt))

}]
(b)
≤ 2 sup

µ
Ex1Ey1Eϵ1 · · ·ExT EyT EϵT

[
sup
h∈H

{
T∑
t=1

ϵth
ℓ(zt)

}]
where ϵt is uniform over {±1} and is (conditional) independent of yt, y′

t.
Here (a) follows by the conditional symmetries of yt, y′

t and (b) follows
by sup(A+B) ≤ supA+ supB and symmetries between yt, y

′
t.

Note that, the following operator inequality holds (by E ≤ sup):

Ex1Ey1Eϵ1 · · ·ExT EyT EϵT ≤ sup
x1,y1

Eϵ1 · · · sup
xT ,yT

EϵT .

By Skolemization as in Lemma 2.2, the upper bound then equals

sup
x1,y1

Eϵ1 · · · sup
xT ,yT

EϵT

[
sup
h∈H

{
T∑

t=1
ϵth

ℓ(zt)
}]

= sup
τ

EϵT

[
sup
h∈H

{
T∑

t=1
ϵth

ℓ(τ(ϵt−1))
}]

︸ ︷︷ ︸
sRad(Hℓ)

,

where τ runs over all (X × Y)-valued binary trees.
Putting everything together, we have proved the following lemma.

Lemma 6.5. The following holds

regT (H) ≤ 2 · sRadT (Hℓ),

where Hℓ := {ℓ(h(x), y) : h ∈ H} ∈ Ŷ(X ×Y).
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To relate the sequential Rademacher complexity to the minimax
regret, we need the following Lipschitz contraction inequality for se-
quential Rademacher complexity from [24, Lemma 12].
Lemma 6.6. Let H ⊂ RZ and ϕ : R× Z → R. If for all z ∈ Z, ϕ(·, z)
is a L-Lipschitz function, then

sRadT (ϕ(H)) ≤ O(L · log3/2 T ) · sRadT (H),
where ϕ(H) = {z→ ϕ(h(z), z) : h ∈ H}.

6.2.2 Regret via Sequential Rademacher Complexity

Now we are in the position to present general bounds for minimax regret
when the loss function is bounded and Lipschitz.
Theorem 6.7. Let Y = Ŷ := [0, 1] and H ⊂ ŶX be a real-valued class.
If the loss function ℓ is bounded, convex, and Lipschitz in its first
argument, then:

regT (H) ≤ Õ(sRadT (H)).
Moreover, for the absolute loss ℓ(ŷ, y) = |ŷ − y|, we have

regT (H) ≥ Ω(sRadT (H)).
Proof. The upper bound follows directly from Lemma 6.6 and Lemma 6.5.

We focus now on the lower bound. Let τ : ⋃Ti=0{0, 1}i → X be any
X -valued binary tree of depth T . We define a specific distribution µ

over (X × Y)T as follows:
1. Sample yT uniformly from {0, 1}T ;

2. Let xt = τ(yt−1).
Note that inf ŷ∈Ŷ Et[|ŷt − yt|] = 1

2 , since yt is uniform over {0, 1} condi-
tioning on xt, yt−1. That is the Bayesian optimal risk equals T

2 . More-
over, |h(xt)− yt| = ϵth(xt) + (1− ϵt)/2, where ϵt = 1− 2yt ∈ {−1,+1}.
Therefore, by Theorem 4.2, we have

regT (H) ≥ EyT

[
T

2 − inf
h∈H

T∑
t=1

(
ϵth(xt) + 1− ϵt

2

)]

= EϵT
[

sup
h∈H

T∑
t=1

ϵth(xt)
]
,
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where the equality follows by Eyt [(1− ϵt)/2] = 1
2 and changing measure

to ϵT . Since τ is selected arbitrary, the inequality remains holds when
taking supτ . We conclude that regT (H) ≥ sRadT (H), as needed.

It should be noted that the logarithmic factor in the upper bound
can be improved by a constant factor via a direct minimax switching
analysis of the regret (without going through Lemma 6.5); see [26].

6.2.3 Minimax Regret for General Lipschitz Loss Functions

We have shown in Theorem 6.7 that for Lipschitz losses, the minimax
regret is tightly characterized by the sequential Rademacher complexity.
To obtain concrete bounds, we need to bound the sequential Rademacher
complexity as well via the sequential fat-shattering dimension, already
introduced in Section 5.4.

The sequential α-fat-shattering dimension sfatα(H) for a class H ⊂
[0, 1]X is defined as the maximal number d such that H can α-fat-shatter
certain trees τ, s of depth d. We recall that in Section 5.4 we also denoted
this dimension as d(α) but in this section we rather use sfatα(H) to
show its dependence on H.

To proceed, we recall the real-valued sequential covering as intro-
duced in Definition 5.1.

Definition 6.4 ((Real-valued) Sequential Cover). Let H ⊂ [0, 1]X and
G ⊂ [0, 1]X ∗ be a class mapping X ∗ → [0, 1]. We say that the class G
sequentially α-covers H up to step T if, for any xT ∈ X T and h ∈ H,
there exists g ∈ G such that

∀t ≤ T, |g(xt)− h(xt)| ≤ α.

Similar to the binary-valued case, we can bound the (real-valued)
sequential cover via the sequential fat-shattering dimension as follows:

Lemma 6.8. For any class H ⊂ [0, 1]X with sequential α-fat-shattering
dimension sfatα(H), there exists a sequential α-cover Gα of H such that

log |Gα| ≤ Õ(sfatα/3(H)),

where Õ hides poly-logarithmic factors in α and T .
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Proof. Let K = {2iα : i ≤ [1/(2α)]} be a discretization of [0, 1] such
that for any a ∈ [0, 1], there exists b ∈ K where |a − b| ≤ α. For any
h ∈ H, we define a function h′ ∈ KX such that

h′(x) = arg min
β∈K
|h(x)− β|.

Let H′ = {h′ : h ∈ H} ⊂ KX . It is easy to observe that any sequential
2α-cover of H′ implies a sequential 3α-cover of H. Our primary goal
is now reduced to bounding the 2α-covering set size of H′. To achieve
this, we introduce the following concept:

1-Shattering Dimension: The 1-shattering dimension of H′ is
defined as the maximum number d such that there exist a X -valued
tree τ and a K-valued tree s, both of depth d, such that ∀ϵd ∈ {0, 1}d,
∃h′ ∈ H′ we have:

1. If ϵt = 0, then h′(τ(ϵt−1)) ≤ s(ϵt−1)− 2α;

2. If ϵt = 1, then h′(τ(ϵt−1)) ≥ s(ϵt−1) + 2α.

We denote FAT1(H′) as the 1-shattering dimension of H′. It is easy to
observe that FAT1(H′) ≤ sfatα(H).

We now introduce the M-SOA algorithm:

Algorithm 6.2 The M-SOA Algorithm
1: Initialize the running hypothesis class: H(0) ← H′

2: for t = 1 to T do
3: for each β ∈ K do
4: Define H(t)

β ← {h ∈ H(t−1) : h(xt) = β}
5: end for
6: Predict ŷt ← arg maxβ∈K

{
FAT1(H(t)

β )
}

7: Observe true label yt
8: if |ŷt − yt| > 2α then
9: Update H(t) ← H(t)

yt

10: else
11: Keep H(t) ← H(t−1)

12: end if
13: end for
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Claim 1. The M-SOA algorithm satisfies the following realizable risk
bound:

sup
xT

sup
h′∈H′

T∑
t=1

1{|ŷt − h′(xt)| > 2α} ≤ FAT1(H′).

Proof. At each time step t such that |ŷt − yt| > 2α, the algorithm
updates the hypothesis class by setting H(t) = H(t)

yt ⊆ H(t−1). Since the
prediction ŷt was chosen to maximize FAT1(H(t)

β ) over β ∈ K, and the
prediction was incorrect by more than 2α, this update necessarily elimi-
nates hypotheses that could otherwise achieve a higher fat-shattering
dimension. Therefore, FAT1(H(t)) decreases by at least 1 at each such
step. Since the initial class H(0) = H′ has fat-shattering dimension
FAT1(H′), the number of mistakes of this type is at most FAT1(H′).

For any I ⊂ [T ] and {βt}t∈I ∈ K |I|, we define a sequential function
by simulating the M-SOA algorithm with the following modification at
steps 8–12:

1. If t ∈ I, update H(t) = H(t)
βt

;

2. If t /∈ I, proceed as in M-SOA.

Let G denote the collection of all such sequential functions with |I| ≤
FAT1(H). We now observe that the class G sequentially 2α-covers H′,
and

log |G| ≤ O
(
FAT1(H′) log(|K|T )

)
.

Here, the covering property follows from the risk bound in Claim 1 and
a similar argument as in Lemma 6.3. While the upper bound on the
size follows by counting the number of such sets I and corresponding
choices of {βt}t∈I .

The lemma follows by combining all the preceding results.

We conclude this section with the following theorem, which relates
all of the concepts introduced.

Theorem 6.9. Let Y = Ŷ := [0, 1], and let H ⊂ [0, 1]X . Assume the
loss function ℓ is bounded, convex, and Lipschitz in its first argument.
Then, the following statements are equivalent for given p ≥ 2 (where Õ
hides poly-logarithmic factors in α and T ):
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1. The Sequential Fat-Shattering Dimension sfatα(H) = Θ̃(α−p);

2. There exists a Sequential α-cover Gα with log |Gα| = Θ̃(α−p);

3. The Sequential Rademacher Complexity sRadT (H) = Θ̃(T
p−1

p );

4. The minimax regret regT (H) = Θ̃(T
p−1

p ).

In this section, we have shown that 1⇒ 2 (Lemma 6.8) and 3⇔ 4
(Theorem 6.7). The remaining implications are more technical and are
addressed in [24]. A direct implication 2⇒ 4 can be obtained via the
EWA algorithm, yielding a regret bound of regT (H) ≤ Õ(T

p+1
p+2 ). The

tighter bound of Õ(T
p−1

p ) follows from the use of chaining, through the
path 2⇒ 3⇒ 4. We omit the full proof and refer the reader to [24].

6.3 Bibliographical Notes

The Littlestone dimension was introduced in [63] (see also [64]), where
the Standard Optimal Algorithm (SOA) was presented. It has since
become a fundamental tool in online learning. The generalization to
the non-realizable case was first studied in [35]. Extensions to real-
valued function classes and the introduction of sequential Rademacher
complexity were developed in [24], [26].



7
Expected Worst Case Minimax Regret

In this chapter, we study the problem of online learning in the hybrid
setting, where features are drawn from a general unknown stochastic
process while labels remain adversarial. This contrasts to the worst-case
minimax regret considered in previous chapters and offers a broader
and more relaxed modeling of learning environments.

The central performance measure in hybrid online learning is the
expected worst-case minimax regret, introduced in (4.4) and recalled
below in (7.1). To simplify notation, we will abbreviate the expected
worst-case minimax regret as r̃T (H) := regT (H). Additionally, we write
r∗
T (H | xT ) := reg∗

T (H | xT ) and rT (H) := regT (H) (worst case regret),
as previously discussed in Chapter 4.

7.1 Problem Formulation

Let X be a feature space, Y be the true label space, and Ŷ = [0, 1]
be the space of outputs of the learner. We denote by H ⊂ ŶX a class
of functions X → Ŷ. For any time horizon T , we consider a class
P of distributions (i.e., random processes) over X T . We consider the
following game between Nature and the predictor. At the beginning,
Nature selects a distribution νννT ∈ P and samples an input sequence

86
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xT ∼ νννT , where xT ∈ X T . At each time step t ≤ T , Nature reveals
the t-th sample xt of xT to the predictor. The predictor then makes
a prediction ŷt ∈ Y using a strategy ϕt : X t × Yt−1 → Ŷ potentially
using the history observed thus far, that is, ŷt = ϕt(xt, yt−1). After the
prediction, Nature reveals the true label yt and the predictor incurs a
loss ℓ(ŷt, yt) for some predefined convex loss function ℓ : Ŷ ×Y → [0,∞).
We are interested in the following expected worst-case minimax regret:

r̃T (H,P) = inf
ϕT

sup
νννT ∈P

ExT ∼νννT

[
sup
yT

(
T∑
t=1

ℓ(ŷt, yt)− inf
h∈H

T∑
t=1

ℓ(h(xt), yt)
)]

.

(7.1)
We note that the expected worst-case minimax regret r̃T (H,P)

recovers the sequential and fixed-design minimax regrets discussed in
Chapter 4 by selecting an appropriate distribution class P.

We also introduce the following expected average case minimax
regret:

r̄T (H,P) = inf
ϕT

sup
νννT ∈P,h∈H

ExT ∼νννT

[
sup
yT

(
T∑
t=1

ℓ(ŷt, yt)− ℓ(h(xt), yt)
)]
(7.2)

where the main difference with r̃T (H,P) is the position of suph.
The following observation is straightforward to prove and demon-

strates the relationship among different notions of regret.

Proposition 7.1. If P is a class of all singleton distributions over X T ,
then r̃T (H,P) = regT (H) (worst case regret) for all H. If P is the
singleton distribution that assigns probability 1 for xT , then r̃T (H,P) =
r∗
T (H | xT ). Furthermore, r̃T (H,P) ≥ r̄T (H,P), for any H and P.

Example 7.1. To understand differences between r̃T and r̄T , we consider
the following example. Let H be the class of all functions [0, 1]→ {0, 1}
that take value 1 on at most T positions and 0 otherwise. Let ν be the
uniform distribution over [0, 1], and ℓ(ŷt, yt) = |ŷt− yt|, where ŷt ∈ [0, 1]
and yt ∈ {0, 1}. We will denote by ν⊗T the i.i.d distribution of length
T with marginal ν. We have r̄T (H, ν⊗T ) = 0, since for any h, w.p. 1 we
have h(xt) = 0 for all t ∈ [T ], meaning that a strategy that predicts 0
all the time incurs 0 regret. However, we also have r̃T (H, ν⊗T ) ≥ T

2 . To
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see this, we choose yT ∈ {0, 1}T uniformly at random and observe that
any strategy will make at least T

2 accumulated losses, however, for any
xT and yT , there exists h ∈ H such that ∀t ∈ [T ], h(xt) = yt.

7.2 Stochastic Sequential Cover

Let X ∗ be the set of all finite sequences over X . We introduce one of
our main technical ingredients, i.e., the stochastic (global) sequential
covering, as follows:

Definition 7.1 (Stochastic sequential cover). We say a class G of functions
X ∗ → [0, 1] is a stochastic (global) sequential cover of a class H ⊂ [0, 1]X
w.r.t. the class P of distributions over X T at scale α > 0 and confidence
δ > 0, if for all νννT ∈ P

PrxT ∼νννT

[
∃h ∈ H ∀g ∈ G ∃ t ∈ [T ] s.t. |h(xt)− g(xt)| > α

]
≤ δ.

We define the minimal size of G to be the stochastic global sequential
covering number of H.

Note that the distribution class P in Definition 7.1 is completely
general and recovers the (classical) sequential covering discussed in
Chapter 6 if P is the class of all singleton distributions over X T .

We first establish the following simple (but useful) composition
property of stochastic sequential cover. Let H1, · · · ,Hm ⊂ [0, 1]X be
m function classes over the same domain and Θ be a parameter space
equipped with some norm || · ||. For any function F : [0, 1]m×Θ→ [0, 1]
such that ∀z1, z2 ∈ [0, 1]m, θθθ1, θθθ2 ∈ Θ we have F (z1, θθθ1)− F (z2, θθθ2) ≤
Lmax{||z1 − z2||∞, ||θθθ1 − θθθ2||} for some constant L ∈ R+, the F -
composition of H1, · · · ,Hm and Θ is defined to be the class:

H = {h(x) = F (h1(x), · · · , hm(x), θθθ) : ∀i ∈ [m], hi ∈ Hi and θθθ ∈ Θ}.

Proposition 7.2. Let H1, · · · ,Hm ⊂ [0, 1]X be any classes, Θ be any
parameter space equipped with norm || · ||, and F be any function
satisfying the conditions above. If ∀i ∈ [m], Hi admits a statistical
sequential covering set Gi at scale α/L and confidence δ/m w.r.t. distri-
bution class P, and Θ admits an α/L cover C under norm || · ||, then
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the F -composition class H of H1, · · · ,Hm and Θ admits a statistical
sequential covering set G w.r.t. P at scale α and confidence δ such that:

|G| ≤ |C|
m∏
i=1
|Gi|.

Proof. For any tuple of indices (j1, · · · , jm) with ji ∈ [|Gi|] and θθθ′ ∈ C,
we construct a function g such that:

g(xt) = F (gj1(xt), · · · , gjm(xt), θθθ′),

where gji is the jith function in Gi. The covering set G is defined
to be the class containing of all such functions g. For any function
h ∈ H, there exist h1, · · · , hm with hi ∈ Hi and θθθ ∈ Θ such that for all
x ∈ X , h(x) = F (h1(x), · · ·hm(x), θθθ). By union bound and definition of
stochastic sequential covering of Gi, w.p. ≥ δ over xT , for all i ∈ [m],
there exist gji ∈ Gi such that ∀t ∈ [T ], |gji(xt) − hi(xt)| ≤ α/L. One
can verify that the function g corresponding to (j1, · · · , jm) and θθθ′ ∈ C
closest to θθθ under || · || is the desired function that covers h on xT , due
to the L-Lipschitz property of F .

We demonstrate below how F -composition can be exploited to
generate interesting complex classes from simple classes.

Example 7.2. Let Θ = [0, 1]2 and H1 ⊂ {0, 1}X be a binary valued
class of finite VC-dimension. If we take F (y,θθθ) = yθ1 + (1 − y)θ2 for
y ∈ {0, 1} and θθθ ∈ [0, 1]2, the F -composition class H ⊂ [0, 1]X of H1
and Θ recovers the setup of [65]. We note that in this case the set Θ
admits an α-covering set of size O(α−2) under L∞ norm for all α > 0
and F is 1-Lipschitz in the sense of Proposition 7.2.

Example 7.3. Let Θ = {θ1 + · · · + θd ≤ 1 : θθθ ∈ [0, 1]d} for some
d ∈ N+ and H1, · · · ,Hd ⊂ {0, 1}X be d binary-valued classes of finite
VC-dimension. If we take F (yd, θθθ) = ⟨θθθ,yd⟩ for yd ∈ {0, 1}d and θθθ ∈ Θ,
the F -composition class H ⊂ [0, 1]X of Hi’s and Θ defines a natural
class. We note that in this case Θ is α-covered by a set of size α−d under
L1 norm and F is 1-Lipschitz in the sense of Proposition 7.2. Moreover,
if we take d = 2 and H2 = {1− h(x) : h ∈ H1} we subsume the setup
of Example 7.2.
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Example 7.4. Let Θ be empty, X = Rd and Hi = {h[a,b](x) = 1{x[i] ∈
[a, b]} : [a, b] ⊂ [0, 1], x ∈ Rd} for i ∈ [d], i.e.,Hi is the class of indicators
of intervals on the ith coordinate of x. If we take F (y1, · · · , yd) = ∏d

i=1 yi
for yd ∈ {0, 1}d, the F -composition class H ⊂ {0, 1}X of Hi’s defines
the class of indicators of rectangular cuboids in Rd and F is 1-Lipschitz.

7.2.1 Upper bounds on regret via stochastic sequential covering

We now prove two general results below that demonstrate how a bound
on the stochastic sequential covering number implies bounds on the
expected worst-case regret r̃T in an algorithmic fashion.

Theorem 7.1. Let H be a set of functions mapping X → [0, 1] and
Gα be a stochastic sequential covering of H at scale α and confidence
δ = 1/T w.r.t. distribution class P. If ℓ(·, y) is convex, L-Lipschitz, and
bounded by 1 on Ŷ for any y ∈ Y, then:

r̃T (H,P) ≤ inf
0≤α≤1

{
αLT +

√
(T/2) log |Gα|+ 1

}
.

Proof. We run the Exponential Weighted Average (EWA) Algorithm 3.3
on Gα. We split the regret into two parts, one that is incurred by the
predictor against Gα and the other that is incurred by the discrepancy
between Gα and H. For the first term, using Theorem 3.4 we conclude
that with probability 1 on xT :

T∑
t=1

ℓ(ŷt, yt) ≤ inf
g∈Gα

T∑
t=1

ℓ(g(xt), yt) +
√

(T/2) log |Gα|.

For the second term, we denote by A the event described in the proba-
bility of Definition 7.1. Since Pr[A] ≤ 1

T and ℓ(ŷ, y) ≤ 1 by assumption,
the expected regret contributed by the event A is at most 1. We now
condition on the event that A does not happen. By Definition 7.1, we
obtain ∀h ∈ H∃g ∈ Gα∀t ∈ [T ], |h(xt)− g(xt)| ≤ α. Since ℓ is bounded
by 1 and L-Lipschitz, we have:

inf
h∈H

T∑
t=1

ℓ(h(xt), yt) ≥ inf
g∈Gα

T∑
t=1

ℓ(g(xt), yt)− αLT.

The result follows by combining these inequalities.
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Now we turn our attention to the logarithmic loss.

Theorem 7.2. Let Y = {0, 1}, Ŷ = [0, 1] and ℓ be the logarithmic loss.
If for all α ≥ 0 there exists a stochastic sequential covering set Gα of
class H ⊂ [0, 1]X w.r.t. distribution class P at scale α and confidence
δ = 1

T , then:

r̃T (H,P) ≤ inf
0≤α≤1

{2αT + log(|Gα|+ 1) + log(|Gα|+ 1)/T + 1} .

Proof. The proof is similar to the proof of Theorem 7.1, but replacing
the EWA algorithm with the Smooth truncated Bayesian Algorithm 5.2
and running the algorithm on Gα∪{u} with truncation parameter α and
uniform prior, where u is the function that maps to 1

2 for all xt. We again
split the regret into two parts, one incurred by the Smooth truncated
Bayesian Algorithm 5.2, and the other incurred by the error of covering.
By Theorem 5.3 the first term is upper bounded by 2αT + log(|Gα|+ 1).
For the error term, we note that we have added all 1

2 valued functions
u into the expert class when running the Smooth truncated Bayesian
Algorithm. This implies that the prediction rule can only incur the actual
accumulated losses upper bounded by T +log(|Gα|+1). Therefore, when
the event A (defined in proof of Theorem 7.1) happens, the expected
regret only contributes (T+log(|Gα|+1)) ·Pr[A] ≤ (T+log(|Gα|+1))/T.
The result follows by combining the inequalities.

7.3 Stochastic Cover for Binary Valued Classes

This section focuses on the stochastic sequential covering number of
binary valued classes H. We assume that P is the class of all i.i.d.
distributions over X T ; however, our results hold for general exchangeable
processes [66] over X T as well, i.e., distributions that are invariant under
permutation of the indexes.

7.3.1 Stochastic sequential cover for finite VC-class

Let H ⊂ {0, 1}X be binary valued class with finite VC-dimension.
We write VC(H) for the VC-dimension of H. We will show that the
stochastic global sequential covering number can be upper bounded
by eO(VC(H) log2 T ) w.h.p. using the 1-inclusion graph algorithm that
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was introduced in [67]. Without going into the technical details of the
1-inclusion graph algorithm, we can understand it as a function that
maps (X × {0, 1})t−1 ×X → {0, 1}, for any given t ≥ 1. For H of finite
VC-dimension and any function Φ : (X × {0, 1})t−1 × X → {0, 1}, we
define the following quantity (here, we follow the notation in [67]):

ˆ̂
MΦ,H(t) = sup

xt∈X t
sup
h∈H

Eσ
[
1{Φ(xσ(t), h({xσ(t−1)})) ̸= h(xσ(t))}

]
,

where σ is the uniform random permutation over [t], we have xσ(t) =
{xσ(1), · · · ,xσ(t)} and h({xσ(t−1)}) = {h(xσ(1)), · · · , h(xσ(t−1))}. The
main result of [67] is stated as follows:

Theorem 7.3 (Haussler et al., Theorem 2.3(ii)). For any binary valued
class H of finite VC-dimension and for any t ≥ 1, there exists a function
Φ : (X × {0, 1})t−1 ×X → {0, 1}, i.e., the 1-inclusion graph algorithm,
that satisfies

ˆ̂
MΦ,H(t) ≤ VC(H)

t
.

Our main result for this part is as follows, with the proof presented
below Lemma 7.6.

Theorem 7.4. For any binary valued class H with finite VC-dimension,
there exists a global sequential covering set G of H w.r.t. the class of all
i.i.d. distributions over X T at scale α = 0 and confidence δ such that
for T ≥ e5 we have:

log |G| ≤ 5VC(H) log2 T + log T log(1/δ) + log T.

The main idea for proving Theorem 7.4 is to show that for the 1-
inclusion graph predictor Φ, we have w.p. ≥ 1−δ over the sample xT i.i.d∼
νννT , the cumulative error is upper bounded by O(VC(H) log T+log(1/δ)).
Assuming this holds, one will be able to construct the covering func-
tions in a similar fashion as [35, Lemma 12]. The bound will follow
by counting the error patterns. However, a direct application of The-
orem 7.3 will only give us an expected VC(H) log T error bound. The
main challenge follows from the fact that even though the samples xT
are generated i.i.d., the predictions made by the 1-inclusion predictor
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are not independent (neither a martingale), and therefore the standard
concentration inequalities do not apply directly.

Our main proof technique exploits permutation invariance of the 1-
inclusion graph predictor, which allows us to relate the cumulative error
to a reversed martingale1. Using Bernstein inequality for martingales
Lemma 2.10, we then establish the following key lemma.

Lemma 7.5. Let Φ : (X × {0, 1})∗ ×X → {0, 1} and h : X → {0, 1} be
functions such that Φ is permutation invariant on (X × {0, 1})∗. If for
all t ∈ [T ] and xt ∈ X t we have:

Prσt

[
Φ(xσt(t), h({xσt(t−1)})) ̸= h(xσt(t))

]
≤ C

t
, (7.3)

where σt is the uniform random permutation on [t] and C ∈ N+, then
for all δ > 0 and T ≥ e5 we have

Pr
σT

[ T∑
t=1

1
{

Φ(xσT (t), h({xσT (s)}s<t)) ̸= h(xσT (t))
}

≥ 4C log T + log
(1
δ

)]
≤ δ.

Proof. For any t ∈ [T ], define the indicator variable

It = 1
{

Φ(xσ(t), h({xσ(t−1)})) ̸= h(xσ(t))
}
,

where σ is a uniform random permutation over [T ]. For each t ∈ [T ], we
define the reversed sequence of indicators as I ′

t = IT−t+1. We observe
that for any t ∈ [T ], the indicator I ′

t depends only on the realizations
of xσ(T ),xσ(T−1), . . . ,xσ(T−t+1), since Φ is permutation-invariant over
xσ(1), . . . ,xσ(T−t). Therefore,

E[I ′
t | I ′

1, . . . , I
′
t−1] = E[I ′

t | xσ(T ), . . . ,xσ(T−t+2)] ≤ min
{

C

T − t+ 1 , 1
}
,

where the inequality follows from the fact that conditioning on xσ(T )
σ(T−t+2)

the permutation σ restricted on xT \{xσ(T ), · · · ,xσ(T−t+2)} is also a
uniform random permutation, so that Eq. (7.3) applies.

1Note that [68, Proposition 10.2] also considers a similar martingale based
approach only for an almost sure rate.
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For any realization I ′
1, . . . , I

′
t−1, define the centered random variables:

I ′′
t = I ′

t − E[I ′
t | I ′

1, . . . , I
′
t−1].

These variables form a martingale difference sequence, i.e., for all t ∈
[T ], E[I ′′

t | I ′′
1 , . . . , I

′′
t−1] = 0. Applying the Bernstein inequality for

martingales (Lemma 2.10), we obtain:

Pr
[
T∑
t=1

I ′′
t > k and Σ2 ≤ v

]
≤ exp

(
− k2

2(v + k/3)

)
,

where

Σ2 =
T∑
t=1

E[I ′′
t

2 | I ′′
1 , . . . , I

′′
t−1].

Note that, conditioned on I ′
1, . . . , I

′
t−1, the indicator I ′

t is a Bernoulli
random variable with parameter pt ≤ min

{
C

T−t+1 , 1
}

. Therefore, if
I ′
t = 1, then I ′′

t ≤ 1, and if I ′
t = 0, then |I ′′

t | ≤ pt. Using basic algebra,
we have, with probability 1:

T∑
t=1

E[I ′′
t

2 | I ′
1, . . . , I

′
t−1] ≤

T∑
t=1

pt + (1− pt)p2
t ≤ C log T + 3C.

Substituting into the Bernstein inequality with

k = 2(C log T + 3C) + log(1/δ) and v = C log T + 3C,

we conclude that, with probability at least 1− δ,
T∑
t=1

It =
T∑
t=1

I ′
t ≤

T∑
t=1

I ′′
t +

T∑
t=1

E[I ′
t | I ′

1, . . . , I
′
t−1]

≤ k +
T∑
t=1

min
{

C

T − t+ 1 , 1
}
≤ 3C log T + 5C + log(1/δ).

Here, we used the following elementary inequality:

∀a, b ≥ 0, (2a+ b)2

2(a+ (2a+ b)/3) ≥ b.

The lemma now follows from the fact that C log T ≥ 5C when T ≥ e5

and C ≥ 1.
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Lemma 7.6 (From error bound to covering). Let H ⊂ {0, 1}X be a binary
valued class and err ∈ N+. For any Ω ⊂ X T , suppose there exists a
prediction rule Φ such that

∀h ∈ H, ∀xT ∈ Ω,
T∑
t=1

1{Φ(xt, h({xt−1})) ̸= h(xt)} ≤ err.

Then, there exists a covering set G ⊂ {0, 1}X ∗ such that for all xT ∈ Ω
and h ∈ H one can find g ∈ G that satisfies g(xt) = h(xt) for all t ∈ [T ],
and

|G| ≤
err∑
t=0

(
T

t

)
≤ T err+1.

Proof. The proof essentially replicates that of Lemma 6.3. For any
I ⊂ [T ] with |I| ≤ err, we construct a function gI as follows. Let xt be
the inputs at time t. We define

gI(xt) =

1− Φ(xt, gI({xi}t−1
i=1)) if t ∈ I,

Φ(xt, gI({xi}t−1
i=1)) otherwise.

where gI({xi}t−1
i=1) = {gI(x1), . . . , gI(xt−1)}. We claim that the set G,

consisting of all such functions gI , is the desired covering set. To see
this, fix any h ∈ H and any sequence xT ∈ Ω. By assumption, we have

T∑
t=1

1{Φ(xt, h({xt−1})) ̸= h(xt)} ≤ err.

Let I ⊂ [T ] be the set of positions i where Φ(xi, h({xi−1})) ̸= h(xi), so
that |I| ≤ err. By construction, it is easy to verify that for all t ∈ [T ],
we have gI(xt) = h(xt). The upper bound on |G| follows by counting
the number of possible subsets I.

Proof of Theorem 7.4. Let Φ be the 1-inclusion graph predictor. We
have that Φ is permutation invariant, since the nodes in the 1-inclusion
graph are determined by subsets of X that do not depend on the order
of elements in the set. By symmetries of i.i.d. distributions, for any
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event A(xT ) on xT i.i.d.∼ νννT , we have:

Pr[A(xT )] = Eσ[PrxT [A(xσ(1), · · · ,xσ(T ))]]
= EσExT 1{A(xσ(1), · · · ,xσ(T ))}
= ExT Eσ1{(A(xσ(1), · · · ,xσ(T ))}
≤ sup

xT

Prσ[A(xσ(1), · · · ,xσ(T ))],

where the interchange of the expectations follows from Fubini’s theorem.
It is therefore sufficient to show that for any xT ∈ X T , w.p. ≥ 1 − δ
over a random permutation σ on [T ],

sup
h∈H

T∑
t=1

1{Φ(xσ(t), h({xσ(t−1)})) ̸= h(xσ(t))} ≤ 5VC(H) log T+log(1/δ).

To see this, we observe that by Sauer’s lemma (Lemma 2.1), there are
at most TVC(H) functions of H restricted on any given xT . Let now δ

in Lemma 7.5 be δ
TVC(H) and C = VC(H). When applying Theorem 7.3

together with a union bound, the error bound w.p. ≥ 1 − δ is of the
form 5VC(H) log T + log(1/δ).

The upper bound for the size of the covering set G follows from
Lemma 7.6 by taking Ω ⊂ X T to be the set for which Φ makes at most
5VC(H) log T + log(1/δ) accumulated errors, where Pr[Ω] ≥ 1− δ.

Theorem 7.4 and Theorem 7.1 immediately imply the following
regret bound.

Corollary 7.7. Let H ⊂ {0, 1}X be a binary valued class with finite
VC-dimension, P be the class of all i.i.d. distributions over X T and
T ≥ e5. If ℓ(·, y) is convex, L-Lipschitz and bounded by 1 for all y ∈ Y ,
then:

r̃T (H,P) ≤
√

3TVC(H) log2 T +O(1).

This result recovers [69] but with a worse log T term. However, our
result establishes the (essentially) same result by using a completely
different technique. Moreover, our technique can be applied to more
general problems than the epoch-based approach of [69].

Indeed, for logarithmic loss, we have the following regret bound:
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Corollary 7.8. Let H be a F -composition class of H1, · · · ,Hd ⊂ {0, 1}X
with Θ as in Example 7.3, P be the class of all i.i.d. distributions over
X T , and T ≥ e5. If ℓ is the logarithmic loss, then:

r̃T (H,P) ≤ O
((

d+
d∑
i=1

VC(Hi)
)

log2 T

)
.

Proof. Taking α = 1
T , we note that Θ can be α-covered by a set C of

size upper bounded by T d under L1 norm. Applying Proposition 7.2
and Theorem 7.4 and noticing that the composition function F is 1-
Lipschitz, there exists a stochastic sequential covering set G of H w.r.t.
i.i.d. processes at scale α = 1

T and confidence δ such that:

log |G| ≤ d log T +
(

5
d∑
i=1

VC(Hi) log2 T

)
+ d log T log(d/T ) + d log T.

The result follows by applying Theorem 7.2 and taking α = δ = 1
T .

For d = 2 and H being the class in Example 7.2, Corollary 7.8 im-
proves upon the O(

√
T ) regret bound established by [65]. Moreover, [60]

derive an O
(

VC(H) log2 T
T

)
risk bound under log-loss, which can be con-

verted into an O
(
VC(H) log3 T

)
regret bound using the epoch-based

approach of [69]. This bound is off by a factor of log T compared to
our regret bound in Corollary 7.8. In addition, our results apply to the
general (worse-case) regret r̃T , rather than the average and well-specified
regret r̄T considered in [60], [65].

7.3.2 Tight bounds for classes with finite star number

In the previous section, we demonstrated that the stochastic sequential
covering number of finite VC class is upper bounded w.h.p. by eO(log2 T ).
We now show that if we assume additional structure on the class, we
can improve the bound to eO(log T ), matching the naive fixed design
lower bound for many non-trivial classes. It can be showed that even
for 1-dimensional threshold functions the realizable cumulative error is
lower bounded by Ω(log T ), thus arguing that the error pattern counting
argument as in Lemma 7.6 cannot provide a bound better than eO(log2 T ).
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To resolve this issue, we introduce the notion of star number that
was used originally in [70] for analyzing the sample complexity of active
learning; however, we use it here in a completely different context. For
any binary valued class H and xd ∈ X d, we say H Star-shatters xd if
there exist h, h1, · · · , hd ∈ H such that for all i, j ∈ [d] with j ̸= i we
have:

h(xi) ̸= hi(xi) but h(xj) = hi(xj),
i.e., a sequence xd is Star-shattered by H if there exists a function
h ∈ H such that any labeling on xd, which differs by one position from
the realization of h, is also realizable by some function hi ∈ H. Such a
sequence xd is called a star set of H. The star number Star(H) of H is
defined to be the maximum number d such that there exists xd that is
Star-shattered by H. Clearly, we have Star(H) ≥ VC(H) for all H.

We now introduce a new notion of certification, which is the key for
our following arguments. For any sequence xt and h ∈ H, we say xt−1

certifies xt under h if:

∀f ∈ H, if ∀i ∈ [t− 1], f(xi) = h(xi) then f(xt) = h(xt).

We have the following property of finite star number classes w.r.t.
certification:

Lemma 7.9. If H has star number upper bounded by s, then for any
xt ∈ X t and h ∈ H we have:

Prσ
[
{xσ(1), · · · ,xσ(t−1)} certifies xσ(t) under h}

]
≥ 1− s

t
,

where σ is the uniform random permutation over [t].

Proof. We only need to show that there are at most s points in xt that
can not be certified by the others under h. Suppose otherwise, that we
have s + 1 such points. Consider the realization of h on these points.
By definition of certification, we can find functions h1, · · · , hs+1 as in
the definition of Star-shattering. This contradicts the fact that the star
number is upper bounded by s.

We now prove a high probability bound on the number of non-
certified positions for a finite star number class, which is similar to
Lemma 7.5.
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Lemma 7.10. Let H ⊂ {0, 1}X be a class with a finite star number and
T ≥ e5. Then, with probability ≥ 1 − δ over xT (sampled from some
i.i.d. distribution over X T ) for all h ∈ H:

T∑
t=1

1
{

xt−1 does not certify xt under h
}
≤

VC(H) log T + 4 Star(H) log T + log(1/δ).

Proof. Note that the event {xt−1 does not certify xt under h} can be
viewed as the event {Φ makes an error at step t} as in Lemma 7.5 (since
certification is permutation invariant). By Lemma 7.9 and Lemma 7.5
with C = Star(H), we have, for all h ∈ H and xT ∈ X T w.p. ≥ 1 − δ
over uniform random permutation σ on [T ]:
T∑
t=1

1{xσ(t−1) does not certify xσ(t) under h} ≤ 4Star(H) log T+log(1/δ).

The result follows from a similar path as in the proof of Theorem 7.4

Lemma 7.10 allows us to construct the sequential covering set ex-
plicitly without relying on error pattern counting as shown next.

Theorem 7.11. Let H be a binary valued class with finite star number.
Then, there exists a stochastic sequential covering set G of H w.r.t. the
class of all i.i.d. distributions over X T at scale α = 0 and confidence δ
such that for T ≥ e5:

log |G| ≤ 5Star(H) log T + log(1/δ).

Proof. We will construct a covering set G directly without relying on
the error pattern counting as in Lemma 7.6. This is the key to removing
the extra log T factor. We will introduce a set K to index the functions
in G, we assume that K is fixed and |K| = 2M for some M to be chosen
later. For any k ∈ K, we will construct a sequential function gk as
follows:

Let xT be a realization of the sample from an i.i.d. source. The
realization tree T of H on xT is a leveled binary tree of depth T + 1,
with each node at level t being labeled xt (where level 1 has only
the root v1), each left edge being labeled 0 and each right edge being
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labeled 1, such that any node vt ∈ T at level t has left (respectively
right) child if and only if there exist h ∈ H such that h(xt) = 0
(respectively h(xt) = 1) and h(xi) = L(vi → vi+1) for all i ≤ t − 1,
where v1 → v2 → · · · → vt = v is the path from root v1 to v and L is
the edge label function. Note that different realizations of xT will result
in different realization trees.

We now assign values of the functions gk with k ∈ K using the
following procedure. For any node v in the realization tree T , we will
associate a set K(v) ⊂ K using the following rule (starting from root):

1. If v is the root, then K(v) = K;

2. If v has only one child u, then K(u) = K(v);

3. If v has two children u1, u2, we assign the sets to u1, u2 being an
arbitrary partition of K(v) of equal sizes, i.e., |K(u1)| = |K(u2)|,
K(u1) ∩ K(u2) = ∅ and K(u1) ∪ K(u2) = K(v).

Clearly, the value K(v) for any node v at level t can be determined
with only the realization of xt and the values of K of all nodes at level
t form a partition of K. The procedure K fails if there exists some
node v with two children such that |K(v)| < 2. Suppose the procedure
K does not fail. We have for any k ∈ K, there exists a unique path
v1 → v2 → · · · → vT+1 with v1 being the root, such that for all t ≤ T +1
we have k ∈ K(vt). For any such k, we assign the value of gk on xt as:

gk(xt) = L(vt → vt+1),

where L is the edge label function as discussed above. If the procedure
K fails at some node vt, we assign the value of gk(xj) arbitrarily for
j ≥ t.

By definition of the realization tree, for any h ∈ H there must
be a unique path v1 → · · · → vT+1, with v1 being root such that
h(xt) = L(vt → vt+1) for all t. Therefore, if the procedure K does not
fail, then for k ∈ K(vT+1), we have h(xt) = gk(xt) for all t ≤ T by
definition of gk. We now show that by setting M = ⌈5Star(H)+log(1/δ)⌉,
w.p. ≥ 1− δ over xT , the procedure K will not fail, thus proving that
the class G = {gk : k ∈ K} is a stochastic sequential covering of H with
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confidence δ. To see this, we note that the procedure K fails at node vt
at level t if and only if there are ≥M + 1 nodes with two children in
the (unique) path v1 → · · · → vt, where v1 is root, since only rule 3 will
reduce the size of value of K by 1/2. Assume now the procedure K fails
at node vt. Let h ∈ H be a function such that h(xi) = L(vi → vi+1) for
all i ≤ t, which must exist by definition of realization tree. Since any
node vj in the path v1 → · · · → vt with two children implies xj−1 does
not certify xj under h, we have that there are at least M + 1 positions j
(with j ≤ t) such that xj−1 does not certify xj under h. By Lemma 7.10
and selection of M , this happens with probability ≤ δ. This completes
the proof.

h1 h2 h3 h4 h5
x1 0 0 0 1 1
x2 0 0 1 1 1
x3 0 1 0 0 1

x1
{h1···h5}
{g1···g8}

x2
{h1···h3}
{g1···g4}

x3
{h1 h2}
{g1 g2}

{h1}
{g1}

0

{h2}
{g2}

1

0

x3
{h3}

{g3 g4}

{h3}
{g3 g4}

0

1

0

x2
{h4 h5}
{g5···g8}

x3
{h4 h5}
{g5···g8}

{h4}
{g5 g6}

0

{h5}
{g7 g8}

1

1

1

Figure 7.1: Realization tree of H defined by the table above and partitioning of G.

Example 7.5. We illustrate the construction of the realization tree
in this example. We set H = {h1, · · · , h5}, as shown in the table of
Figure 7.1 with sample x1,x2,x3. The realization tree is shown in
Figure 7.1, where each function h ∈ H is consistent with some path of
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the tree, and each path has some function h ∈ H consistent with it. We
assign a subset of G for each node in the tree denoted as {·}. Observe
that if a node has only one child then the child has the same assigned
set as the parent, else we assign an arbitrary partition of the parent
set with equal sizes to its two children. The final partitions of the set
G = {g1, · · · , g8} are in the leaf nodes of the tree. In the figure, binary
nodes (i.e., nodes with two children) are in gray color. The maximum
number of binary nodes in any path is 3, by selecting |G| ≥ 23 = 8,
which guarantees that the assigning procedure does not fail until the leaf.
Each gk is associated with a unique path from root to the leaf with (the
only) assigned sets on the nodes that contain gk. The values of gk are
defined to be the labels of out edges along the path in the obvious way.
One can verify that g1 covers h1, g2 covers h2, g3, g4 covers h3, g5, g6
covers h4, and g7, g8 covers h5. Generally, by Lemma 7.10 the number
of binary nodes in any path is of order O(log T ) with high probability
(i.e., setting |G| = 2O(log T ) ensures the process success w.h.p.).

Corollary 7.12. Let H ⊂ [0, 1]X be the F -composition class as in
Example 7.2 with H1 ⊂ {0, 1}X being a class of finite star number, P
being the class of all i.i.d. distributions over X T . If ℓ is the Log-loss,
then:

r̃T (H,P) ≤ O(Star(H1) log T ).

Proof. By Proposition 7.2 and Theorem 7.11, H admits a stochastic
sequential covering set G at scale α and confidence δ such that log |G| ≤
2 log(1/α)+5Star(H1) log T +log(1/δ). Taking α = δ = 1

T and applying
Theorem 7.2, the result follows.

Note that a natural class that has finite star number is the threshold
functions H = {1{x ≥ a} : x, a ∈ [0, 1]}, which has star number 2.
Corollary 7.12 implies the regret under Log-loss is upper bounded by
O(log T ). We refer to [70] for more non-trivial examples.

We note also that the O(log T ) regret bound is not likely to be
established by the epoch based approach (which [60], [65], [69] have
used to establish their regret bounds), since the epochs will inevitably
introduce an additional log T factor.
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However, having a finite star number is not a necessary condition
for achieving a covering number of size eO(log T ). To see this, consider
the hypothesis class that labels exactly one input as 1 and assigns label
0 to all others. This class admits a worst-case sequential cover of size
T + 1 = eO(log T ) (cf. Chapter 6.1.2), yet its star number is infinite.

7.3.3 Tight bounds with finite Star-Littlestone dimension

In this section, we introduce a new complexity measure that we call
Star-Littlestone dimension. The main purpose of this measure is to
incorporate the star number and Littlestone dimension that goes beyond
simple finite star number, and allows us to expand the class of H with
eO(log T ) cover.

Definition 7.2 (Star-Littlestone dimension). Let ⋃di=0{0, 1}i denote the
set of all binary sequences of length at most d. For any integers d and
s, we say that a binary tree τ : ⋃di=0{0, 1}i → X is Star-Littlestone
shattered by H at star scale s if for every path ϵd ∈ {0, 1}d, the star
number Star(Hϵd) > s, where

Hϵd =
{
h ∈ H : ∀t ∈ [d], h(τ(ϵt−1)) = ϵt

}
.

In words, Star-Littlestone shattering means that for every path
in the tree, the class of hypotheses consistent with the path has star
number greater than s. The Star-Littlestone dimension SL(s) of H at
star scale s is defined as the largest d such that there exists a depth-d
tree τ that is Star-Littlestone shattered at scale s by H.

Applying Theorem 7.11 and the SOA argument as in [35], we estab-
lish our next main theorem.

Theorem 7.13. Let H be a binary valued class with Star-Littlestone
dimension SL(s) at star scale s. Then, there exists a stochastic sequential
covering set G of H w.r.t. the class of all i.i.d. distributions over X T at
scale α = 0 and confidence δ such that:

log |G| ≤ O(max{SL(s) + 1, s} log T + log(1/δ)).

Proof. The proof will incorporate the SOA argument as in [35] and
the result from Theorem 7.11. For notational convenience, we denote
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d = SL(s) + 1. For any I ⊂ [T ] with |I| ≤ d, we will construct a
set GI . Let Φ be the SOA predictor (cf. Algorithm 6.1) that predicts
the label for which the remaining consistent subclass has maximum
Star-Littlestone dimension at star scale s, if both subclasses have SL
dimension 0 we predict the label for which the remaining consistent
subclass has maximum star number (and break ties arbitrarily). We
now construct functions in GI as follows. The predictions of functions in
GI are partitioned into 2 phases (start with phase 1). At phase 1, all the
functions in GI use the same prediction rule as in Lemma 7.6, that is, if
we are at time step t ∈ I, we predict using 1−Φ, else we use Φ to predict,
where Φ is the SOA prediction rule described above. We enter phase
2 if the remaining consistent class has star number upper bounded by
s; we then construct the prediction functions in GI as in Theorem 7.11
with Star(H) = s, confidence δ/T d+1 and |GI | ≤ e5s log T+log(T d+1/δ). The
covering class G is defined to be:

G =
⋃

I⊂[T ], |I|≤d
GI .

By Theorem 7.11 with Star(H) = s and δ = δ/T d+1 and computing the
number of Is, we have

|G| ≤ T d+1e5s log T+log(T d+1/δ) ≤ eO(max{d,s} log T+log(1/δ)).

We now show that G is indeed a stochastic sequential covering of H
with confidence δ. Let HI be the (random) subclass of functions in H
that are consistent with Φ with error pattern I before entering phase
2 2 (it is possible that h remains on phase 1 until time T ). Note that
all functions in HI agree on samples at phase 1. Note also that, with
probability 1 we have H = ⋃

I⊂[T ],|I|≤dHI . To see this, we note that if
h disagreed with the SOA then the remaining consistent class has SL(s)
decreased by at least 1 (similar to Lemma 6.2) or has star number ≤ s if
the current consistent class has SL(s) = 0. This implies that any h ∈ H
can be disagreed with SOA at most d times before entering phase 2,
which must be in some HI with |I| ≤ d. Now, for any I with |I| ≤ d we

2Here, phase 1 and 2 corresponds to that the functions in H consistent with h
on current sample has star number > s and ≤ s, respectively.
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need to show that:

Pr[GI covers HI ] ≥ 1− δ

T d+1 .

Note that the main difficulty here is that HI is a random subset. We
show that conditioning on any realization of HI , the above inequality
holds (the inequality will then hold by law of total probability). This
follows from Theorem 7.11 by noticing that the samples in phase 2 are
still i.i.d. and independent of samples in phase 1, and GI trivially covers
HI in phase 1 by definition of GI and HI . The theorem will now follow
by a union bound on all the Is.

Example 7.6. In this example, we show a class H that has both infi-
nite star number and Littlestone dimension but finite Star-Littlestone
dimension. Let H = {h[a,b](x) = 1{x ∈ [a, b]} : [a, b] ⊂ [0, 1]} be the
indicators of intervals. It is easy to see that H has both infinite star
number and Littlestone dimension. However we can show that it has
Star-Littlestone dimension 0 at star scale 4. To see this, consider any
point x ∈ [0, 1] and the hypothesis class H1 = {h ∈ H : h(x) = 1}. We
show that the star number of H1 is ≤ 4. For any 5 points in [0, 1], there
must be at least 3 points on the same side relative to x, the restriction
of H1 on such points is equivalent to threshold functions (either of form
1{x ≥ a} or 1{x ≤ b}), thus it cannot Star-shatter these 3 points. This
implies that the global sequential covering size of H is upper bounded
by eO(log T ) as in Theorem 7.13.

Example 7.7. Let

H =
{
hB(x) = 1{x ∈ B} : B =

d∏
i=1

[ai, bi] ⊂ Rd
}

be the class of indicators of rectangular cuboids in Rd. Note that H
has infinite Star-Littlestone dimension for any finite star scale when
d ≥ 2 and the VC-dimension of H is upper bounded by O(d). By
Example 7.4, we have H can be expressed as a function in terms of
indicators of intervals. Applying Proposition 7.2 and Example 7.6 we
obtain a covering set G of H with log |G| ≤ O(d log T +d log(d/δ)). This
implies a regret bound of mixable losses (including logarithmic loss) of
order O(d log T + d log d).
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Remark 7.1. We leave it as an open problem to determine if the
upper bound eO(log T ) can be achieved for any finite VC-dimensional
class. Establishing such a result even for the threshold functions H =
{hw(x) = 1{⟨w,x⟩ ≥ a} : w,x ∈ Rd, a ∈ R} with d ≥ 2 seems to be a
hard task.

7.4 Real Valued Class with Finite Fat-shattering

We have established tight stochastic sequential covering bounds for
finite VC classes in the previous section. We now consider the more
general setting where H ⊂ [0, 1]X is a class of real-valued functions
taking values in [0, 1], and assume that H has a bounded fat-shattering
dimension.

We first recall the notion of fat-shattering number, already discussed
in Chapter 2.2. For any class H ⊂ [0, 1]X , we say H α-fat shatters
xd ∈ X d if there exists sd ∈ [0, 1]d such that for all I ⊂ [d] there exists
h ∈ H such that for all t ∈ [d]: (i) If t ∈ I, then h(xt) ≥ st + α; and
(ii) If t ̸∈ I, then h(xt) ≤ st − α. Then, the fat shattering number of H
at scale α is defined to be the maximum number d := d(α) such that
there exists xd ∈ X d with H α-fat shatters xd.

We now state our main result for this section.

Theorem 7.14. Let H be a class of functions X → [0, 1] with the α-fat
shattering number d(α). Then there exists a stochastic global sequential
covering set G of H w.r.t. the class of all i.i.d. distributions over X T at
scale α and confidence δ such that:

log |G| ≤ O(d(α/32)(log T log(4/α))4

+ (log2 T + log T log(4/α)) log(log T/δ)),

where O hides absolute constant which is independent of α, T , and δ.

We first introduce the notion of local α-covering. We say that a class
F locally α-covers H at xT ∈ X T if for all h ∈ H there exists f ∈ F
such that:

∀t ∈ [T ], |h(xt)− f(xt)| ≤ α.
Here, we also assume that F ⊂ H (we can always convert α-covering
set F of H to a 2α-covering set F̃ ⊂ H such that |F̃ | ≤ |F|).
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The following lemma upper bounds the local α-covering size w.r.t.
the α-fat shattering number of H, which is due to [71].

Lemma 7.15. Suppose the α fat-shattering number of H is d(α). Then
for all xT ∈ X T , there exists F (which depends on xT ) that locally
α-covers H at xT such that:

|F| ≤ 2
(
T

( 2
α

+ 1
)2
)⌈d(α/4) log

(
2eT

αd(α/4)

)
⌉

≤ 2d(α/4)(log2 T+2 log2(1/α)+O(1)).

Our proof of Theorem 7.14 is based on the following key lemma,
which is an application of the classical symmetrization argument and
an epoch approach similar to [69].

Lemma 7.16. Let H ⊂ [0, 1]X be a class with α-fat shattering number
d(α). Let S1, S2 be two i.i.d. samples from the same distribution over
X , both of size k. For any Si with i ∈ {1, 2}, we define a distance for
all h1, h2 ∈ H as:

dαSi
(h1, h2) =

∑
s∈Si

1{|h1(s)− h2(s)| ≥ α}.

Then

PrS1,S2

[
∃h1, h2 ∈ H s.t. dαS1(h1, h2) = 0 and d4α

S2 (h1, h2) ≥ r
]

≤ 2Õ(d(α/8))−r

where Õ(d(α/8)) = 2d(α/8)(log2 k + 2 log2(1/α) +O(1)).

Proof. We use a symmetrization argument. We denote by A the event
that ∃h1, h2 ∈ H such that dαS1

(h1, h2) = 0 but d4α
S2

(h1, h2) ≥ r. Let σ
be a random permutation that switches the ith positions of S1, S2 w.p.
1
2 and independently for different i ∈ [k]. By symmetries, it is sufficient
to fix S1, S2 and upper bound Prσ[A[σ(S1, S2)]]. By Lemma 7.15, we
know that there exists a set F that α/2-covers H on S1 ∪ S2 with:

|F| ≤ 2d(α/8)(log2 k+2 log2(1/α)+O(1)).

If the event A happens, then there exist f1, f2 ∈ F such that (using
property of covering):

d2α
S1 (f1, f2) = 0 but d3α

S2 (f1, f2) ≥ r.
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Clearly, in order for A to happen, any position s ∈ S2 such that
|f1(s)−f2(s)| ≥ 3α must not be switched to S1 under σ, which happens
with probability upper bounded by 2−r. Applying union bound over all
pairs of F , we have

PrS1,S2 [A] ≤ 22d(α/8)(log2 k+2 log2(1/α)+O(1))−r

which completes the proof.

Proof of Theorem 7.14. We partition the time horizon into epochs,
where each epoch s ranges from time step 2s−1, · · · , 2s − 1. For each
epoch s, we will construct a covering set Gs. The global covering set G
will be constructed by considering all the combinations of functions in
Gs with s ∈ {1, · · · , ⌈log T ⌉}.

For any epoch s, we construct Gs as follows. Let F ⊂ H be the local
α-covering set on the samples x1, · · · ,x2s−1−1. By Lemma 7.15, we have

|F| ≤ 2d(α/4)(s2+2 log2(1/α)+O(1)).

Let
rs = 2d(α/8)(s2 + 2 log2(1/α) +O(1)) + log(log T/δ).

By Lemma 7.16 w.p. ≥ 1 − δ
log T for any h ∈ H there exists f ∈ F

such that f 4α-covers h on samples x2s−1 , · · · ,x2s−1 except rs positions
(the f ∈ F that α-covers h on x2s−1−1 is the desired function since F
is a local α-covering). Let J be a discretization of interval [0, 1] such
that for any a ∈ [0, 1], there exists b ∈ J so that |a − b| ≤ 4α. We
have |J | ≤ ⌈ 1

8α⌉. Now, for any I ⊂ {2s−1, · · · , 2s − 1} with |I| ≤ rs,
{ki}i∈I ∈ J |I| and f ∈ F , we construct a function fI,k|I| as follows:

1. If t ∈ I, we set fI,k|I|(xt) = kt;

2. If t ̸∈ I, we set fI,k|I|(xt) = f(xt).

The class Gs is defined as the class of all such fI,k|I| . By definition of
rs and by Lemma 7.16, we have w.p. ≥ 1 − δ

log T , for all h ∈ H there
exists g ∈ Gs such that for all t ∈ {2s−1, · · · , 2s − 1} we have:

|g(xt)− h(xt)| ≤ 4α.
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We observe that:

|Gs| ≤ |F| · (2s|K|)rs+1 ≤ 2O(d(α/8)((s log(1/α))3)+(s+log(1/α)) log(log T/δ)).

We now construct the global covering set G as follows. For any index
(j1, · · · , j⌈log T ⌉) with js ∈ [|Gs|], we define a function g such that it
uses the js function in Gs to make prediction during epoch s. By union
bound on the epochs, we have w.p. ≥ 1− δ for any h ∈ H, there exists
g such that:

∀t ∈ [T ], |h(xt)− g(xt)| ≤ 4α.
This implies that G is a 4α global sequential covering set of H. Thus

|G| =
⌈log T ⌉∏
s=1

|Gs| ≤ 2O(d(α/8)(log T log(1/α))4+(log2 T+log T log(1/α)) log(log T/δ)).

The result follows by taking α in the above expression to be α/4.

We complete this section with two results regarding the expected
worst case minimax regret.

Corollary 7.17. Let H be a [0,1]-valued class with α-fat shattering
number of order α−l for some l ≥ 0, and P be a class of all i.i.d.
distributions over X T . If ℓ(·, y) is convex, L-Lipschitz and bounded by
1 for all y ∈ Y, then:

r̃T (H,P) ≤ Õ((LT )(l+1)/(l+2))

where Õ hides a poly-log factor.

Proof. Apply Theorem 7.14 to Theorem 7.1 to find

r̃T (H,P) ≤ inf
0≤α≤1

{
αLT + Õ

(√
Tα−l

)}
and taking α = (LT )−1/(l+2) finishes the proof.

Note that [28, Theorem 3] demonstrated that for known i.i.d. pro-
cesses one can achieve an Õ(T (l−1)/l) regret bound (in fact they estab-
lish the result for the smooth adversary processes). However, extending
such an chaining based argument to our unknown i.i.d. processes as
in Corollary 7.17 seems to be an non-trivial task, since for unknown
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i.i.d. processes one cannot express the expected worst case regret in
the iterated minimax formulation as in [25]. We leave it as an open
problem to determine if the bound in Corollary 7.17 is tight or not for
the unknown i.i.d. processes.

Corollary 7.18. Let H be a [0,1]-valued class with α-fat shattering num-
ber of order α−l with l ≥ 0, and P be the class of all i.i.d. distributions
over X T . If ℓ is Log-loss, then r̃T (H,P) ≤ Õ(T l/l+1).

Proof. Applying Theorem 7.14 to Theorem 7.2, we have r̃T (H,P) ≤
inf0≤α≤1

{
2αT + Õ(α−l)

}
, and taking α = T−1/(l+1) completes the

proof.

We can show that the regret bound in Corollary 7.18 is actually
tight upto poly-logarithmic factors for general classes of α-fat shattering
number of order α−l (with l ≥ 1), see Proposition 7.3 in Section 7.5.
However, it is known by [46], [61] that this bound is not tight for all
classes even for the adversary case.

7.5 Lower Bounds For Regret

We now provide a general approach for lower bounding the regret r̃(H,P)
using the fixed design regret defined in (4.5) and analyzed in Chapters 5
and 6. We will assume throughout this section that H ⊂ [0, 1]X is a
general real valued function class and P is the class of all i.i.d. processes
over X T . We first introduce the following well known tail bound for the
coupon collector problem, see e.g. [72, Theorem 1.9.2].

Lemma 7.19. Let X1, X2, · · · be i.i.d. samples from the uniform distri-
bution over [T ], and ρ be the first time such that [T ] ⊂ Xρ

1 . Then for
any c ≥ 0 we have Pr[ρ ≥ T log T + cT ] ≤ e−c.

For any function Φ that maps sequences from X ∗ to R, we say Φ is
monotone if for any xT ⊂ zT1 we have Φ(xT ) ≤ Φ(zT1), where xT ⊂ zT1

means that for any s ∈ X , the number of s appearances in xT is no more
than the number of appearances of s in zT1 . We also assume a regularity
condition for the loss ℓ such that for all ŷ1, ŷ2 ∈ Y there exists y ∈ Y
with ℓ(ŷ1, y) ≥ ℓ(ŷ2, y). We also recall that r∗

T (H) = supxT r∗(H|xT ).



7.5. Lower Bounds For Regret 111

Theorem 7.20. Let H be any [0, 1]-valued class. If the fixed design
regret r∗

T (H) = maxxT r∗
T (H|xT ), where r∗

T (H | xT ) defined in (4.5), is
monotone over xT and ℓ satisfies the above regularity condition, then:

r̃T (H,P) ≥ (1−O(1/ log T ))r∗
κ−1(T )(H) ≥ (1−O(1/ log T ))r∗

(T/ log T )(H),

where P is the class of all i.i.d. distributions over X T and κ(T ) =
T log T + T log log T .

Proof. Let x̃T be the feature that achieves the maximum of r∗
T (H | x̃T )

(i.e., r∗
T (H)). We define the distribution ν to be the uniform distribution

over {x̃1, · · · , x̃T } (with possibly repeated elements). Let T1 = T log T +
T log log T . We have

r̃T1(H,P) = inf
ϕT1

sup
νννT ∈P

ExT1 ∼νννT

[
sup
yT1

(
T1∑

t=1
ℓ(ŷt, yt)− inf

h∈H

T1∑
t=1

ℓ(h(xt), yt)
)]

≥ inf
ϕT1

ExT1 ∼νT1

[
sup
yT1

(
T1∑

t=1
ℓ(ŷt, yt)− inf

h∈H

T1∑
t=1

ℓ(h(xt), yt)
)]

(a)
≥ inf

ϕT1
Pr[x̃T ⊂ xT1 ] · E

[
sup
yT1

(
T1∑

t=1
ℓ(ŷt, yt)− inf

h∈H

T1∑
t=1

ℓ(h(xt), yt)
)
| x̃T ⊂ xT1

]
(b)
≥ Pr[x̃T ⊂ xT1 ] · E

[
inf
ϕT1

sup
yT1

(
T1∑

t=1
ℓ(ŷt, yt)− inf

h∈H

T1∑
t=1

ℓ(h(xt), yt)
)
| x̃T ⊂ xT1

]
= Pr[x̃T ⊂ xT1 ] · E

[
r∗

T1
(H | xT1) | x̃T ⊂ xT1

]
(c)
≥ Pr[x̃T ⊂ xT1 ]r∗

T (H | x̃T )
(d)
≥
(

1− 1
log T

)
r∗

T (H),

where (a) follows by conditioning on the event {x̃T ⊂ xT1} and observing
that the regret is positive for all xT1 ; (b) follows by inf E ≥ E inf; (c)
follows from the fact that r∗

T1
(H | xT1) ≥ r∗

T (H | x̃T ) which further
follows from the monotonicity of r∗

T (H | xT ); (d) follows by Lemma 7.19.
To complete, we notice that T = κ−1(T1) and κ−1(T1) ≥ T1

log T1
.

The following lemma shows the monotonicity for Log-loss:

Lemma 7.21. For Log-loss, we have r∗
T1

(H | xT1) ≥ r∗
T (H | x̃T ), so long

as x̃T ⊂ xT1 .
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Proof. Note that for any xT , we have by Theorem 4.3 that:

r∗
T (H | xT ) = log

∑
yT

sup
h∈H

T∏
t=1

h(xt)y1(1− h(xt))1−yt .

Therefore, any permutation over xT does not change the value r∗
T . Now,

suppose x̃T ⊂ xT1 ; we can permute xT1 so that the first T samples
match with x̃T . The result follows from the fact that playing more
rounds does not decrease the regret. To see this, we let h ∈ H to be
the hypothesis that achieves minimal accumulated loss in the first T
rounds, we then select the label yt for which ℓ(ŷt, yt) ≥ ℓ(h(xt), yt) for
the following steps t > T , which ensures non-decreasing regret.

Finally, we apply the above general lower bound to the expected
worst case minimax regret.

Corollary 7.22. Assume ℓ is the Log-loss. If r∗
T (H) ≥ C logα T then

r̃T (H,P) ≥ C logα T − o(logα T ),

where P is the class of i.i.d. distributions. If r∗
T (H) ≥ CTα, then

r̃T (H,P) ≥ CTα

logα T − o(T
α/ logα T ).

Remark 7.2. A question arises whether the log T factor in Corollary 7.22
can be eliminated. We do not have a complete answer for this question
at this point; however, it is easy to show that there exists a class
H such that r̃T (H,P) ≤ (1 − e−1)r∗

T (H), where P is the class of all
i.i.d. processes. Meaning that the reduction as in Corollary 7.22 will
necessarily introduce a factor < 1 for polynomial regrets r∗

T (H).

We refer to Chapter 5 for the lower bounds on r∗
T (H) of various

classes H under Log-loss. In particular, the following lower bound is a
complement to Corollary 7.18.

Proposition 7.3. For any l ≥ 1, there exists a [0, 1]-valued class H with
α-fat-shattering number of order O(α−l) and P is the class of all i.i.d.
distributions over X T , such that

r̃T (H,P) ≥ Ω̃(T l/(l+1)),

under logarithmic loss.
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Proof. Let X = [T ]; we define H = {h ∈ [0, 1]X : ∑T
t=1 h(t)l ≤ 1}. We

claim that the α-fat shattering number ofH is upper bounded by α−l. To
see this, we assume there exist d points xd ∈ [T ] such that d > α−l and
xd is α-fat shattered by H. By definition of α-fat shattering, there exist
two functions h1, h2 ∈ H such that ∀i ∈ [d], |h1(xi)−h2(xi)| ≥ 2α. This
implies that ∑T

t=1 |h1(t)− h2(t)|l ≥ d · (2α)l > 2l, i.e., ||h1 − h2||l > 2.
However, this contradicts the fact that ||h1 − h2||l ≤ ||h1||l + ||h2||l ≤ 2
by the triangle inequality of Ll norm. By Theorem 5.16, we have
r∗
T (H) ≥ Ω(T l/(l+1)). Invoking Corollary 7.22, the result follows.

Note that Proposition 7.3 only shows that the lower bound Ω̃(T l/(l+1))
holds for certain hard classes. We prove in the following proposition a
lower bound that holds for all classes.

Proposition 7.4. Let l ≥ 1, H be any [0, 1]-valued class with α-fat-
shattering number of order Ω(α−l) and P is the class of all i.i.d. distri-
butions over X T . Then

r̃T (H,P) ≥ Ω̃(T (l−1)/l),

under logarithmic loss.

Proof. Let xT be samples that are α-fat-shattered by H and witnessed
by sT , where α ≥ Ω(T−1/l). We now describe an adversary strategy
that achieves the Ω(T (l−1)/l) lower bound for the fixed design regret
r∗
T (H | xT ). To see this, for any t ∈ [T ], if the predictor predicts
ŷt ≥ st, we set yt = 0, else, we set yt = 1. By definition of α-fat
shattering, there exists h ∈ H such that ∀t ∈ [T ], |h(xt)− ŷt| ≥ α and
ℓ(ŷt, yt) ≥ ℓ(h(xt), yt). We assume without loss of generality, yt = 1. By
definition of Log-loss, we have:

ℓ(ŷt, yt)− ℓ(h(xt), yt) = log(h(xt)/ŷt) ≥ log((ŷt + α)/ŷt) ≥ α/2,

The last inequality follows by log(1 + x) ≥ x/(x + 1). Therefore, we
have r∗

T (H | xT ) ≥ Tα/2 ≥ Ω(T (l−1)/l). The proposition now follows by
Corollary 7.22.

Note that when l ≥ 2 the lower bound in Proposition 7.4 is achieved
by Logistic regression [73, Example 2]. Therefore, the lower bound is
not universally improvable (this is similar to Corollary 7.18).
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Example 7.8 (Well-specified v.s. worst case yT ). In this example we
demonstrate that the expected worst case regret r̃T can be substantially
different than the well-specified average case regret r̄T as in [60]. This will
explain why our Theorem 7.20 is a necessary technique for establishing
lower bonds for r̃T . To see this, for any X with |X | ≥ T we define:

H =
{
hb(x) = 1

2 + b(x)√
T

: b ∈ [−1, 1]X
}
.

This class admits an O(1) uniform KL-cover at scale O(1/T ), and
therefore by [60], the well-specified regret is of order O(1). However,
by [61, Page 6], the fixed design regret r∗

T (H) ≥ 2(1/
√
T )T ≥ Ω(

√
T ).

Invoking Corollary 7.22, this implies an Ω̃(
√
T ) lower bound for r̃T .

This also demonstrates that the KL-cover (or equivalently the Hellinger
cover) as in [60] cannot capture the behaviour of r̃T under Log-loss even
with values bounded away from 0.

7.6 Bibliographical Notes

The hybrid learning scenario considered in this chapter was introduced
in [69]. For finite VC-dimensional hypothesis classes under absolute loss,
it was shown that the regret grows as O(

√
VC(H)T log T ). The analysis

employs an epoch-based method that reduces the infinite hypothesis
class to a sequence of finite coverings (in contrast to the single global
covering used in this chapter), with the regret bound influenced by a√
T term arising from the covering approximation. The same approach

was applied in [65] to the logarithmic loss, yielding an O(
√
T ) regret

bound. In [60], for logarithmic loss and finite VC-dimensional hypothesis
classes, the risk was shown to grow as O((VC(H) log2 T )/T ); this result
applies to the average-case minimax regret and under realizability.
A more general framework was studied in [25], where at each time
step Nature adversarially selects a distribution from a restricted set
determined by previously observed samples. This gives rise to the
concept of distribution-dependent Rademacher complexity within a
minimax formulation. The results therein apply to the distribution
non-blind setting, where the distribution is known in advance.

The material presented in this chapter follows the framework devel-
oped in [74].



8
Online Leaning under General Unknown

Processes

We studied in Chapter 7 the online learning setting where features
are generated by an unknown i.i.d. process, and we characterized tight
performance guarantees using the notion of expected worst-case regret.
In this chapter, we turn to the stochastic setting under more general
feature generation processes, which may be highly flexible and, in par-
ticular, non-stationary. In particular, we focus on a smooth adversarial
setting for known and unknown (universal) distributions. Furthermore,
in this chapter we study here how the structure of the random process
class impacts expected worst case regret. This is unlike most of the
results in our prior chapters that focus on the impact of the structure
of H on regret

8.1 Stochastic Modeling of Data Processes

Let X be a feature (instance) space, Ŷ = [0, 1] be the prediction
space, and Y = {0, 1} be the true label space. As always, we write
H ⊂ ŶX for a class of functions X → Ŷ. For any time horizon T , we
consider a class P of random processes over X T . We are interested in the
expected worst case minimax regret r̃T (H,P) as defined in (7.1) under
a general convex loss ℓ. This includes, for instance, the absolute loss

115
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ℓ(ŷ, y) = |ŷ − y| (which can be interpreted as Eb̂∼Bernoulli(ŷ)[1{b̂ ̸= y}])
and the logarithmic loss ℓ(ŷ, y) = −y log ŷ − (1− y) log(1− ŷ). Using
the minimax inequality (cf. Section 2.3), it is easy to observe that

r̃T (H,P) ≥ sup
ξξξ2T

inf
ϕT

E(xT ,yT )∼ξξξ2T

[
T∑

t=1
ℓ(ϕt(xt, yt−1), yt)− inf

h∈H

T∑
t=1

ℓ(h(xt), yt)
]
,

where ξξξ2T is a joint distribution over X T × YT such that the marginal
distribution of ξξξ2T restricted on X T is in P. We will use such a relation
to derive lower bounds for r̃T .

In this chapter, we assume that H ⊂ {0, 1}X is binary valued1 and
have finite VC-dimension. We specifically study here how the structure
of the random process class P impacts expected worst case regret. This
is unlike most of the results in our prior chapters that focus on the
impact of the structure of H on regret. We now provide several examples
of P that demonstrate how previously considered setups in the literature
fit into our framework.

Example 8.1. If P is the class of all singleton distributions over X T ,
our setup recovers the adversary setting, as discussed in Chapters 5 and
6, as well as in [24]. If P is the class of all i.i.d. processes over X T , our
setup recovers those of [69] discussed in Chapter 7.

Example 8.2 (The smooth adversary setting). The smooth adversary
setting is an intermediate setting between the full adversary and the
i.i.d. case. In this setting, one assumes that there is some (known)
underlying reference measure µ over X , such that at each time step t an
adversary selects some σ-smooth distribution νt w.r.t. µ that generates
sample xt. Formally, we say a distribution ν is σ-smooth (with σ ≤ 1)
w.r.t. µ if ν is absolutely continuous w.r.t. µ and has density v(x) = dν

dµ
such that µ ({x : v(x) ≤ 1/σ}) = 1. We denote by Sσ(µ) the class of
all σ-smooth distributions w.r.t. µ. We say a process νννT over X T is σ-
smooth w.r.t. µ if for all t ≤ T the conditional distribution νt(Xt | Xt−1)
of Xt conditioning on Xt−1 is in Sσ(µ) almost surely. Using a standard

1We also assume H to be binary valued for the clarity of presentation. However,
our results can be extended to real valued functions as well.
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skolemization argument as discussed in Lemma 2.2, the minimax regret
for any class H w.r.t. smooth adversaries, as in [27], [28], [75], is simply
r̃T (H, Sσ(µ)).

Note that the smooth adversary setting in Example 8.2 requires the
reference distribution µ to be known and fixed in advance. However,
in many practical scenarios, one may have no prior knowledge of the
underlying reference measures. To address this limitation, we introduce
the following general concepts.

Let µ1, . . . , µK be probability measures over X , and let Sσ(µk)
denote the set of all σ-smooth distributions over X with respect to refer-
ence measure µk. Let νt(Xt | Xt−1) denote the conditional distribution
of Xt given the past Xt−1. Then a random process XT over X T , with
joint distribution νT , is said to be a (K,σ)-smooth process if

Pr

∃µ1, . . . , µK such that ∀t ∈ [T ], νt(Xt | Xt−1) ∈
⋃

k∈[K]
Sσ(µk)

 = 1.

(8.1)
We denote by UσK the class of all (K,σ)-smooth processes.

Furthermore, we denote by Sσ(µ1, . . . , µK) the class of all σ-smooth
stochastic processes with (known) reference measures µ1, . . . , µK ; that
is, for any νT ∈ Sσ(µ1, . . . , µK), we have for all t ∈ [T ],

νt(Xt | Xt−1) ∈
⋃

k∈[K]
Sσ(µk) almost surely.

Note that the processes in Example 8.2 correspond to the special case
Sσ(µ), for a single known reference measure µ.

This leads to our next definition:

ŨσK :=
⋃

µ1,...,µK

Sσ(µ1, . . . , µK),

where the union is taken over all K-tuples of distributions over X . It is
straightforward to show (see Propositions 8.1 and 8.2 below) that:

UσK ⊂ Uσ/K1 , ŨσK ⊂ Ũσ/K1 , Sσ(µ1, . . . , µK) ⊊ ŨσK ⊊ UσK ,

where the last two inclusions are strict.
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Proposition 8.1. Let µ1, · · · , µK be K arbitrary distributions over the
same domain X . Then for all k ∈ [K] the measure µk is 1/K-smooth
w.r.t. µ̄, where µ̄ = 1

K

∑K
k=1 µk.

Proof. Note that µ̄ is interpreted as follows: for any measurable event
A ⊂ X , we have µ̄(A) = 1

K

∑K
t=1 µk(A). It is easy to verify that µ̄ is

a probability measure over X . We now show that, for all k ∈ [K], µk
is 1/K-smooth w.r.t. µ̄. To see this, we observe that µk is absolutely
continuous w.r.t. µ̄. By Radon–Nikodym theorem, there is a density
uk(x) = dµk

dµ̄ of µk w.r.t. µ̄. Let Ek = {x : uk(x) > K}. We have
µk(Ek)/K > µ̄(Ek) provided µ̄(Ek) > 0. However, by definition of µ̄, we
also have µk(Ek)/K ≤ µ̄(Ek). This implies that µ̄(Ek) = 0.

Proposition 8.2. Let µ1, µ2, µ3 be distributions over X such that µ1
is σ1-smooth w.r.t. µ2 and µ2 is σ2-smooth w.r.t. µ3. Then µ1 is σ1σ2-
smooth w.r.t. µ3.

We emphasize that the class UσK is a very broad family of processes,
encompassing many interesting and natural settings. A full characteri-
zation of this class is left for future work. Instead, we concentrate on
the subclasses U1

K and Ũσ1 , which are rich enough to convey our core
insights. Intuitively, one can view U1

K as the collection of all dynamically
changing processes with cost K: that is, along any sample path, the
number of distinct conditional distributions of the process is bounded
above by K.

Notations. Throughout this chapter, we use lower case Greek letters
µ, ν to denote a probability measure over X . For any two measures
µ1, µ2, we use µ1 · µ2 to denote the product distribution of µ1, µ2 and
µ⊗T to denote the i.i.d. measure of µ over X T . We use boldface Greek
letters νννT to denote general distributions over X T . We use Math Sans
Serif font P to denote classes of distributions over X T . For any random
process XT over X T , t ≤ [T ] and xt−1, we use νt(X1 | xt−1) to denote
the conditional distribution of Xt conditioning on xt−1. We also use
νννT to denote the joint distribution of XT over X T . Sometimes, we
write νt = νt(Xt | xt−1) to simplify the notation when the conditioning
context xt−1 is clear. We should emphasize that all parameters appearing
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in our bounds are non-asymptotic, meaning that one should not view
them as constants. We will often provide ranges of the parameters for
our bounds to hold.

8.2 Known Distribution

We start by examining the simpler case where the reference measures
are known, i.e., the class Sσ(µ1, . . . , µK). By Propositions 8.1 and 8.2,
the analysis of the smooth adversary setting with multiple (known)
reference measures can be reduced to the case with a single reference
measure. It is therefore sufficient to consider the setup from Example 8.2,
where a single reference distribution µ is given.

The following proposition, due to Haghtalab et al. [27] and substan-
tially simplified in Block et al. [28], plays a key role in our analysis.

Proposition 8.3. For any σ-smooth random process XT with refer-
ence measure µ, there exists a (coupled) random processes V mT with
i.i.d. distribution µ⊗mT such that w.p. ≥ 1 − Te−σm (over the joint
distribution of XT , V mT ), we have

∀t ∈ [T ], Xt ∈ {Vm(t−1)+1, · · · , Vmt}.

Proof. We first sample V mT according to the i.i.d. distribution µ⊗mT .
We then construct Xt recursively in the following manner. After generat-
ing X1, · · · , Xt−1, the conditional distribution of ν(Xt | Xt−1) is deter-
mined. Let St be a random set such that each Zi ∈ {Vm(t−1)+1, · · · , Vmt}
is included into St independently w.p. σvt(Zi) (i.e., w.p. 1− σvt(Zi) we
do not include it), where vt is the density of ν(Xt | Xt−1) w.r.t. µ (see
Example 8.2). We then generate Xt by sampling uniformly from St if
St is non-empty and sampling independently from νt if St is empty. It
is easy to verify that XT is distributed exactly according to νννT , and
w.p. ≥ 1 − (1 − σ)m, we have Xt ∈ {Vm(t−1)+1, · · · , Vmt}. The result
then follows by union bound on [T ].

A set A ⊂ X∞ is monotone if for any xT ⊂ zT ′ , we have xT ∈
A⇒ zT ′ ∈ A, where xT ⊂ zT ′ means xT is a sub-sequence of zT ′ and
xT ∈ A means any infinite sequence with prefix xT is in A. We have
the following lemma.
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Lemma 8.1. Let XT and V mT be the coupling as in Proposition 8.3
and A ⊂ X∞ be an arbitrary monotone set, then

Pr[XT ∈ A] ≤ Te−σm + Pr[V mT ∈ A].

Proof. By Proposition 8.3, we have w.p. ≥ 1− Te−σm that XT ⊂ V mT .
Denote B to be such an event. Since A is monotone, we have

E[1{{XT ∈ A} ∧B} − 1{{V mT ∈ A} ∧B}] ≤ 0.

This implies

Pr[{XT ∈ A} ∧B] ≤ Pr[{V mT ∈ A} ∧B] ≤ Pr[V mT ∈ A].

Our result follows by observing that:

Pr[XT ∈ A] = Pr[{XT ∈ A} ∧B] + Pr[{XT ∈ A} ∧ B̄]
≤ Pr[{XT ∈ A} ∧B] + Pr[B̄] ≤ Pr[{XT ∈ A} ∧B] + Te−σm

which completes the proof.

Note that unions and intersections of any collection of monotone
sets are monotone. For any two functions h1, h2 : X → {0, 1}, the set
AN = {x∞ ∈ X∞ : ∑∞

t=1 1{h1(xt) ̸= h2(xt)} ≥ N} is monotone for all
N ∈ N.

We now present one of our key technical lemmas, which establishes
a high-probability covering property for finite VC classes.

Lemma 8.2. Let H ⊂ {0, 1}X be any class with finite VC-dimension
and µ be an arbitrary probability measure over X . If Fϵ is an ϵ-cover
of H w.r.t. µ, i.e.,

sup
h∈H

inf
f∈Fϵ

Prx∼µ[h(x) ̸= f(x)] ≤ ϵ, (8.2)

with ϵ = 1
2M2 , then for all n ∈ N and M ≥ 2 we have:

PrxM ∼µ⊗M

[
sup
h∈H

inf
f∈Fϵ

M∑
t=1

1{h(xt) ̸= f(xt)} ≥ 3VC(H) + n

]
≤ 2
Mn

.
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Proof. For any h ∈ H, we denote by f̂h = arg minf∈Fϵ Prx∼µ[h(x) ̸=
f(x)]. Let S0 and S1 be i.i.d. samples of µ with size M and M2,
respectively. For any N ≤M , we define two events:

AN1 =

∃h ∈ H s.t.
∑
s∈S0

1{h(s) ̸= f̂h(s)} ≥ N

 ,
and

AN
2 =

{
∃h ∈ H s.t.

∑
s∈S0

1{h(s) ̸= f̂h(s)} ≥ N and
∑
s∈S1

1{h(s) ̸= f̂h(s)} = 0
}
.

We now claim that Pr[AN2 | AN1 ] ≥ 1
2 . To see this, conditioning on AN1 ,

there exists some h for AN1 to happen. For such function h, we can
select ϵ = 1/(2M2) in (8.2) such that (since |S1| = M2):

E

∑
s∈S1

1{h(s) ̸= f̂h(s)}

 ≤ 1
2 .

By the First Moment method we know that 1−Pr[X = 0] = Pr[X ≥ 1] ≤
E[X] ≤ 1/2 for any random variable X supported on N with E[X] ≤ 1/2.
Thus Pr[AN2 | AN1 ] ≥ 1

2 . This implies that Pr[AN1 ] ≤ 2Pr[AN1 ∩ AN2 ] ≤
2Pr[AN2 ].

We now upper bound Pr[AN2 ]. By symmetries of i.i.d. distribution, we
have Pr[AN2 (S0∪S1)] = EπPr[AN2 (π(S0∪S1))] ≤ supS0∪S1 Prπ[AN2 (π(S0∪
S1))], where π is uniform random permutation over S0∪S1. We now fix
any S0 ∪ S1 and perform a uniform random permutation π. Let h ∈ H
be any function such that there exist at least N elements in S0 ∪ S1 for
which f̂h(s) ̸= h(s) (otherwise Prπ[AN2 ] = 0). Note that, in order for AN2
to happen under π, none of the elements s ∈ S0 for which f̂h(s) ̸= h(s)
should be permuted to S1. Denote such an event to be B. We have

Prπ[B] =
(M
N

)(M2+M
N

) ≤ 1
MN

,

where we have used the fact that a
b ≥

a−i
b−i for all b ≥ a ≥ i > 0. Since

there are at most (M2 +M)VC(H) functions restricted on S0 ∪ S1, we
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have by union bound that

Prπ[AN2 ] ≤ (M2 +M)VC(H)

MN
≤M3VC(H)−N ,

where we used the fact that M ≥ 2. The result follows by taking
N := 3VC(H) + n in the above expression and noting that Pr[AN1 ] ≤
2Pr[AN2 ].

Lemma 8.2 implies the following important approximating bound
for σ-smooth processes.

Proposition 8.4. Let H ⊂ {0, 1}X be a class with finite VC-dimension,
µ be an arbitrary distribution over X and XT be any σ-smooth random
process w.r.t. µ. If we take ϵ = σ2

2T 2 log2(T/β) for some β > 0 and Fϵ to
be the ϵ-covering set of H w.r.t. µ as in Lemma 8.2, then

Pr
[

sup
h∈H

inf
f∈Fϵ

T∑
t=1

1{h(Xt) ̸= f(Xt)} ≥ 3VC(H) + n

]
≤ β + 2

Tn
.

Proof. Taking m = log(T/β)
σ as in Proposition 8.3 one can make the error

probability upper bounded by β. Let M = mT as in Lemma 8.2, we have
by setting ϵ = 1

2M2 = σ2

2T 2 log2(T/β) the probability as in Lemma 8.2 is
upper bounded by 2

Tn since M ≥ T . The theorem follows by Lemma 8.1
by noticing that the event of the proposition is monotone (see the
discussion follows Lemma 8.1 by noticing that sup inf ≡ ∪∩) and we
apply Lemma 8.2 over the process V mT .

Corollary 8.3. Let H ⊂ {0, 1}X be a binary valued class with finite
VC-dimension, and µ be arbitrary distributions over X . For any convex
and bounded loss, we have

r̃T (H, Sσ(µ)) ≤ O
(√

T · VC(H) log(T/σ) + VC(H)
)
.

For logarithmic loss we have

r̃T (H,Sσ(µ)) ≤ O(VC(H) log(T/σ)).

Proof. Let Fϵ be as in Proposition 8.4, and let β = 1
2T . Taking n = 2,

the tail probability in Proposition 8.4 is upper bounded by 1
T .
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Applying the EWA algorithm to Fϵ, we obtain the following regret
bound for bounded convex losses (cf. Theorem 7.1):√

(T/2) log |Fϵ|+3VC(H)+O(1) = O

(√
TVC(H) log(T/σ) + VC(H)

)
,

where we have used the standard bound on the covering number:
log |Fϵ| ≤ O(VC(H) log(1/ϵ)) [76].

Applying the Smooth Truncated Bayesian algorithm (Algorithm 5.2)
to Fϵ with truncation parameter 1

T , we obtain the following regret
bound for the log-loss:

log |Fϵ|+ 3VC(H) log T +O(1) = O(VC(H) log(T/σ)).

Remark 8.1. Note that the first bound in Corollary 8.3 recovers the
bound in [27], while the second bound is new and improves a log T
factor for Log-loss if we use the VC(H) log T approximation bound of [27,
Lemma B.2] instead of our Proposition 8.4.

Corollary 8.4. LetH be a class of finite VC-dimension and Sσ(µ1, · · · , µK)
be the smooth process with multiple (known) reference measures µ1, · · · , µK .
Then

r̃T (H,Sσ(µ1, · · · , µK)) ≤ O(
√
TVC(H) log(KT/σ))

under bounded convex losses, and

r̃T (H,P) ≤ O(VC(H) log(KT/σ))

under logarithmic loss and bounded mixable losses.

Proof. This follows directly from Corollary 8.3 and Proposition 8.1
and 8.2.

8.3 Regret for Unknown Distributions: Universal Case

We now analyze the minimax regret for the universal smooth processes.
In Section 8.3.1, we examine dynamically changing processes of cost K,
i.e., the class U1

K , and establish tight upper and lower bounds for
hypothesis classes with finite VC dimension under the absolute loss.
These bounds are further refined for specific loss functions, such as the
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logarithmic loss. In Section 8.3.2, we investigate the class Ũσ1 (i.e., smooth
processes with a fixed but unknown reference measure) by establishing
a key connection between Ũσ1 and the adversarial K-selection process.
We demonstrate our approach by proving sublinear regret bounds for
one-dimensional threshold functions.

8.3.1 The class U1
K with finite VC class

Before we analyze the class U1
K , we note that the processes in U1

K

are highly non-stationary. Our first main technical ingredient is the
following decoupling of the random processes in U1

K into K (conditional)
i.i.d. processes.

Let XT be an arbitrary process in U1
K . We can extend XT into

another process V KT in the following manner. The first T samples of
V KT equal XT . For any conditional marginal νk of XT with k ∈ [K],
we extend the sample XT by sampling i.i.d. from νk such that νk is used
exactly T times in the sample V KT for each k ∈ [K]. Now, we denote
V (k) = Vk1 , · · · , VkT

as the subsequence in V KT that corresponds to νk,
where kts are random indices.

Proposition 8.5. Conditioning on k1 and V k1−1, the sample V (k) is an
i.i.d. process of length T for all k ∈ [K] (the V (k)s are not necessarily
independent for different k).

Proof. Note that conditioning on k1 and V k1−1, the distribution νk is
determined. By definition of the conditional distribution for any events
A ⊂ X T−1 and B ⊂ X , we have

Pr[V kT −1
k1

∈ A, VkT
∈ B | V k1−1]

= Pr[V kT −1
k1

∈ A | V k1−1] · Pr[VkT
∈ B | V kT −1

k1
∈ A, V k1−1]

= Pr[V kT −1
k1

∈ A | V k1−1] · νk(B),

where V kT −1
k1

= {Vk1 , Vk2 , · · · , VkT −1}. The proposition follows by induc-
tion on T .

It is important to point out that the extension of XT to V KT is
required for the decoupling to work. Otherwise, the constructed process
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V (k) is not necessarily i.i.d. (instead it is a random prefix of an i.i.d.

process). Now, to analyze the performance of a predictor Φ on the
process XT , it is sufficient to study Φ on each of the sub-sequences
V (k). Note that, this is generally a non-trivial task, since the predictor
can only access to each of V (k)s obliviously, i.e., it never exactly knows
the decoupling. The technical challenge is to ensure that the presence
of other V (k)s do not affect the performance of the predictor on each
individual V (k).

The adaptive epoch-EWA algorithm. The epoch approach [69] is
a common way for dealing with distribution blind (i.e., universal)
cases. The algorithm proceeds as follows: we partition the time hori-
zon into ⌈log T ⌉ epochs, where each epoch s ranges from time steps
2s − 1, · · · , 2s+1. In epoch s, we perform Exponential Weighted Average
(EWA) Algorithm 3.1 on a finite expert class by selecting one function
from each equivalent class of H that agrees on the samples of the pre-
vious epochs. The rationale behind this approach is that as we obtain
more and more samples, we can learn the underlying hypothesis and
then use the learned hypothesis to make prediction for the next epoch.
However, this heavily relies on the assumption that the distributions
are stationary (i.e., the samples should have similar statistics among
different epochs). This does not hold even for U1

2.

Example 8.3 (Failure of epoch approach). Let X = {x1,x2} be the
instance space and H = {h1, h2} be the hypothesis class with h1(x1) =
h2(x1) = 1, h1(x2) = 0 and h2(x2) = 1. We define distributions ν1, ν2
to be the singleton distributions on x1 and x2, respectively. We assume
that the time horizon is T = 2s+1− 1. For the first s− 1 epochs, we use
ν1 to generate samples and use ν2 for the last epoch. Now, after s− 1
epochs, the algorithm, as in [69], will choose the expert to be any one of
h1, h2 (since they agree on the previous samples). It is easy to see that
the algorithm must incur at least T/2 regrets (the adversary simply
labels the following samples using hi that differs from the algorithm’s
selection) .

It can be shown that any predefined set of epochs cannot provide
bounds better than Ω(T 2/3), even for the simple class of Example 8.3
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Algorithm 8.1 Adaptive epoch-EWA algorithm
Input: Reference class H and update threshold N

1: Initialize s← 0, E ← 0, and H0 ← {h}, where h ∈ H is arbitrary.
2: for t← 1 to T do
3: Set ts ← t, r ← 1, m← |Hs|, and W r ← {1, . . . , 1} ∈ Rm.
4: while E ≤ N do
5: Set learning rate ηr ←

√
8 log m

r .
6: Receive xt.
7: Make prediction:

ŷt =
∑m

i=1 h
s
i (xt) ·W r

i∑m
i=1 W

r
i

, hs
i ∈ Hs.

8: Receive yt.
9: Update weights:

W r+1
i ←W r

i e
−ηrℓ(hs

i (xt),yt) ∀i ≤ m.

10: Update E:

E ← max
h∈H, hs∈Hs

{
r−1∑
e=0

1{h(xts+e) ̸= hs(xts+e)} : ∀j < ts, h(xj) = hs(xj)
}
.

11: Increment t← t+ 1 and r ← r + 1.
12: end while
13: Increment s← s+ 1, reset t← t− 1, and E ← 0.
14: Define equivalence h1 ∼s h2 if ∀j ≤ t, h1(xj) = h2(xj), where h1, h2 ∈
H.

15: Let Hs be the class that selects exactly one element from each equiva-
lence class under ∼s.

16: end for
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(see Example 8.4 in Section 8.3.3). Our main idea for resolving this
issue is the adaptive epoch approach, presented in Algorithm 8.1. Note
that the "adaptive" in Algorithm 8.1 has two different meanings. First,
we select the learning rate ηr adaptively, and second, the error bound
E is computed adaptively (i.e., we change the epochs according to the
samples we observe). Our main result for this section is the following
performance bound of Algorithm 8.1.

Theorem 8.5. Assume that the loss ℓ is convex in the first argument
and upper bounded by 1, and H ⊂ {0, 1}X is a class of finite VC-
dimension. If ŷt is the prediction rule of Algorithm 8.3 that takes
input H and N =

√
(T · VC(H) log T )/K, we have for all ϵ > 0 if

K3 · VC(H) ≤ O(T 1−ϵ/ log T )

r̃T (H,U1
K) ≤ O(

√
KT · VC(H) log T ),

where O hides a constant that depends only linearly on 1/ϵ. Furthermore,
for any numbers d,K ≥ 1 with (8Kd) · log(2Kd) ≤ T , we have

sup
H,VC(H)≤d

r̃T (H,U1
K) ≥

√
KdT/64,

under the absolute loss. For any K ≤ T the bound Ω(
√
KT ) holds for

threshold functions.

Sketch of Proof. We only sketch the main idea here and refer to Sec-
tion 8.3.3 for detailed proof. At a high level, our goal is to bound the
number of epochs (i.e., the number of times we reenter the while loop).
Note that, we are exiting the while loop only when the approxima-
tion error E of current expert class Hs is larger than the threshold
N . Suppose we can upper bound the number of epochs by S. We
denote by T1, · · · , TS the lengths of each epochs. Note that for each
epoch s ≤ S, the regret can be split into two parts: the regret against
expert class Hs and the error of approximating H by Hs. For the
first term, we have by standard result (see Chapter 3 that the re-
gret is upper bounded by

√
2Ts|Hs| ≤

√
2Ts · VC(H) log T , the last

inequality follows from |Hs| ≤ TVC(H). The second term is trivially
upper bounded by N , since we change epochs once the approxima-
tion error is larger than N . Therefore the regret is upper bounded
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by ∑S
s=1(

√
2Ts · VC(H) log T +N) ≤ SN +

√
2ST · VC(H) log T , where

the inequality follows from Cauchy–Schwarz inequality ∑S
s=1
√
Ts ≤√

S
∑n
s=1 Ts =

√
ST . The key technical challenge is to show that if

we choose N =
√

(T · VC(H) log T )/K, we can ensure that S ≤ O(K)
w.h.p. under any process in U1

K , provided K3 ·VC(H) ≤ O(T 1−ϵ/ log T ).
This is achieved using the decoupling of U1

K , together with a symmet-
ric argument for bounding the approximation errors on each of the
decoupled sub-sequences, see Lemma 8.15 and 8.16 in Section 8.3.3.

To prove the lower bound, we use a hard hypothesis class similar
to [27], together with a mixed adversary-i.i.d. process based on the
concept of Littlestone forests that achieves the tightest dependency
Ω(
√
K · VC(H)T ). We note that a reduction to the Littlestone dimen-

sion as in [27] can only provide an Ω(
√
KT ) bound. Our technical

contribution is to obtain a tight dependency on both VC(H) and K.
See Section 8.3.3 for detailed proof.

Remark 8.2. Note that, for K = 1, Theorem 8.5 recovers the upper
bound in [69] with lower computational cost (we only run O(1) epochs
for K = 1, while [69] runs O(log T ) epochs). We believe the condition
K3 · VC(H) ≪ T 1−ϵ/ log T is an artifact of our analysis and could be
eliminated via a further refined approach. We will establish a tighter
dependency on K for the full range K ≤ T in the next section with a
slightly worse log3 T factor. Furthermore, Algorithm 8.3 can be made
adaptive to K as well, see Remark 8.5 (in Section 8.3.3). Theorem 8.5
also establishes a fundamental distinction between the universal and
distribution aware case, as in Corollary 8.4 w.r.t dependency of K, i.e.,
K vs logK.

The adaptive epoch approach proposed in the previous section
results in tight bounds for the absolute loss and general convex bounded
losses. For some special losses such as the logarithmic loss and general
mixable losses, we provide tighter bounds on regret. We note that our
results in this section also provide tighter bounds for bounded convex
losses with parameters beyond the ranges of Theorem 8.5. We start
with the following generic upper bounding technique:
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A generic upper bounding technique: A crucial part of establishing
regret bounds when the reference distribution is known (e.g., [27]), is to
apply the EWA algorithm over a uniform cover of H (see Corollary 8.3).
This, unfortunately, is not available for our universal case, since we do
not know the reference measure µ in advance. A general methodology
for dealing with such cases is via the so called stochastic sequential cover
as in Definition 7.1 of Chapter 7. This definition immediately implies
the following regret bounds by the standard expert algorithms (e.g.,
EWA), as in Theorem 7.1 and 7.2.

Proposition 8.6. Let G be a stochastic sequential cover of H w.r.t P
at scale α = 0 and confidence β = 1

T . Then r̃T (H,P) ≤ O(
√
T log |G|)

under bounded convex losses and r̃T (H,P) ≤ log |G| under logarithmic
loss.

The above results lead us to the following general approach for upper
bounding r̃T through stochastic sequential cover. Let H ⊂ {0, 1}X and
P be arbitrary classes as defined above. We first find a prediction rule
Φ : (X × {0, 1})∗ ×X → {0, 1} such that:

∀νννT ∈ P, PrxT ∼νννT

[
sup
h∈H

err(Φ, h,xT ) ≥ B(T, β)
]
≤ β, (8.3)

where err(Φ, h,xT ) = ∑T
t=1 1{Φ(xt, h(x1), · · · , h(xt−1)) ̸= h(xt)} is the

cumulative error of Φ under the realizable sample of h on xT and B(T, β)
is an error bound depending on the confidence parameter β and the
time horizon T . For any such prediction rule Φ, we can then bound the
stochastic sequential cover size using the following lemma as shown in
Lemma 7.6.

Lemma 8.6. Let H and P be arbitrary classes and Φ be a predictor
satisfying (8.3). Then there exists a stochastic sequential cover G of H
w.r.t. P at scale α = 0 and confidence β such that

log |G| ≤ O((B(T, β) + 1) · log T ).

The upper bound on r̃T (H,P) then follows from Proposition 8.6.
We remark that a crucial part for applying this approach is finding the
predictor Φ and the upper bound B(T, β), which is generally non-trivial
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if the processes in P are non-stationary due to the requirement of finding
a bound on the form Pr[suph].

The product distributions: We first consider a simpler random process
class and illustrate how our technique works. We say a distribution νννT
over X T is a product distribution of type K if there exist distributions
ν1, · · · , νK over X such that νννT = ∏T

t=1 νt, where νt ∈ {ν1, · · · , νK}.
Note that distributions νks and the configuration of the marginals of νννT
need not be fixed and are unknown to the learner (e.g., the processes
in Example 8.3 are product distributions of type 2). We prove the
following upper bound for the stochastic sequential covering for such
distributions:

Theorem 8.7. Let H be a binary valued class with finite VC-dimension,
and P be the class of all product distributions over X T with type K.
Then, there exists a global sequential covering set G of H at scale
α = 0 and confidence β such that log |G| ≤ O(K · VC(H) log2 T +
log T log(1/β)).

Proof. We start with the following technical lemma.

Lemma 8.8. Let I1, · · · , IT be random variables over {0, 1}T such that
there exists a number C > 0 and partition J1, · · · JK ⊂ [T ] of [T ] such
that for all k ∈ [K] and kt ∈ Jk

E[Ikt | Ikt−1] ≤ C

t
,

where kt is the tth element in Jk. Then for all β > 0, we have

Pr
[
T∑
t=1

It ≥ 3CK log(T/K) + 7CK + log(1/β)
]
≤ β.

Proof. Let I ′
t = It −E[It | It−1], we have I ′

t form martingale differences.
We now analyze the conditional variance of I ′

t, i.e., ∑T
t=1 E[I ′2

t | It−1].
We compute the variance for each partition Jk. For any kt ∈ Jk, we
have |I ′

kt
| ≤ 1 w.p. pt and |I ′

t| ≤ pt w.p. 1− pt, where pt ≤ min{Ct , 1}.
Therefore, we have ∑|Jk|

t=1 E[I ′2
kt
| Ikt−1] ≤ ∑|Jk|

t=1 pt + p2
t ≤ C log |Jk| +

3C. Here, we have used the fact that ∑∞
t=1 p

2
t ≤ 2C and ∑|Jk|

t=1
C
t ≤
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C log |Jk|+ C. The second inequality is straightforward; we prove the
first inequality. We split the summation into ∑C

t=1 p
2
t + ∑∞

t=C p
2
t ≤

C+∑∞
t=C

C2

t2 ≤ 2C, where the first inequality follows by pt ≤ min{Ct , 1}.
Now, the lemma follows by a simple application of the Bernstein’s
inequality Lemma 2.10 and noting that ∑K

k=1 log |Jk| ≤ K log(T/K)
since ∑K

k=1 |Jk| = T .

Proof of Theorem 8.7. Our proof exploits the symmetries of the product
distributions of type K. At a high level, we will show that there exists
an algorithm, i.e., the 1-inclusion graph algorithm [67], that achieves
O(K log T + log(1/β)) cumulative error bound w.p. ≥ 1 − β if the
features xT are sampling from a product distribution of type K and
the labels yT are realized by some h ∈ H. Suppose this holds, then one
will be able to derive the covering size bound through Lemma 8.6.

We now establish the realizable cumulative error bound. Let Φ be
the 1-inclusion graph algorithm, as in [67], and νννT be an arbitrary
product distribution of type K. We partition the index set [T ] into K
groups J1, · · · , JK such that for any indices i, j belonging to the same
group Jk, we have νi = νj . Note that such a partition will only be used
in our analysis and it is unknown to the algorithm Φ. Denote by π

a random permutation such that the restriction of π to any Jk with
k ∈ [K] is uniform random permutation over Jk and is independent for
different k. Let A be an arbitrary event over xT . We have by symmetries
of the product distribution that:

PrxT ∼νννT [A(xT )] = EπPrxT ∼νννT [A(xπ(T ))] ≤ sup
xT

Prπ[A(xπ(T ))].

It is therefore sufficient to fix the features xT and prove the cumulative
error bound under permutation π. For any h ∈ H, we denote Iht to be
the indicator of the event

Φ(xπ(t), {h(xπ(1)), · · · , h(xπ(t−1))}) ̸= h(xπ(t)),

i.e., the predictor Φ makes an error at time t for the realizable sample
of h. We claim that

Eπ[Iht | xπ(t+1), · · · ,xπ(T )] ≤
VC(H)
tkt

,
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where tkt is the position of t in Jkt and kt ∈ [K] is the index such
that t ∈ Jkt . To see this, we have by [67, Theorem 2.3(ii)] that for
any realization xt, there are at most VC(H) positions j ∈ [t] such that
Φ(xt−j , h({xt−j)}) ̸= h(xj), where xt−j is the sample of xt by removing xj
and h({xt−j}) = {h(x1), · · · , h(xj−1), h(xj+1), · · · , h(xt)} be the labels
of h on xt−j . Thus, there are at most VC(H) such indices in Jkt ; by
restricting π on xt, we have Iht = 1 only if such indices are switched
to xt under π, which happens w.p. ≤ VC(H)

tkt
. Now, by the permutation

invariance of 1-inclusion graph predictor, we have that Iht is completely
determined by xπ(t), · · · ,xπ(T ). Therefore, we have

Eπ[Iht | Iht+1, · · · , IhT ] = Eπ[Iht | xπ(t+1), · · · ,xπ(T )] ≤
VC(H)
tkt

.

This implies that Ih1 , · · · , IhT form the reversed sequence as in Lemma 8.8.
Invoking Lemma 8.8 with C = VC(H), we have

Prπ
[
T∑
t=1

Iht ≥ O(K · VC(H) log(T/K) + log(1/β))
]
≤ β.

Since there are only TVC(H) functions restricted on any xT by Sauer’s
lemma, we have by union bound

Prπ
[

sup
h∈H

T∑
t=1

Iht ≥ O(K · VC(H) log(T/K) + log(TVC(H)/β))
]
≤ β.

The upper bound on the stochastic sequential covering number now
follows by Lemma 8.6.

Thus upper bounds on the regret follow from Theorem 8.7 and
Proposition 8.6.

Corollary 8.9. Let H be a binary valued class of finite VC-dimension
and P be the class of all production distributions of type K. For any
K,T ≥ 1 we have r̃T (H,P) ≤ O(

√
KT · VC(H) log2 T ) under bounded

convex losses and r̃T (H,P) ≤ O(K · VC(H) log2 T ) under log-loss.
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The class U1
K : The 1-inclusion graph algorithm for product processes

in the previous part relies heavily on symmetries in the product distribu-
tion. This, unfortunately, does not hold for general processes in U1

K . Our
main technique to deal with this issue is to replace the 1-inclusion graph
predictor with the ERM rule, together with a perturbation argument for
establishing a realizable cumulative error bound, as in (8.3). This allows
us to establish the following stochastic sequential covering bound:

Theorem 8.10. Let H be a binary valued class of finite VC-dimension.
Then there exists a stochastic sequential covering set G of H w.r.t. U1

K

at scale α = 0 and confidence β > 0 such that

log |G| ≤ O(K(VC(H) log3 T

+ log2 T log(K/β)) log(VC(H) log T log(K/β))),

where O hides an absolute constant independent of K,VC(H), T, β.

Sketch of Proof. We sketch only the high-level idea here and refer to
Section 8.3.4 for the full proof. We show that for any process in U1

K and
the ERM predictor Φ, the realizable cumulative error (see Equation (8.3))
is upper bounded byB(T, β) ≤ O(K(VC(H) log2 T+log T log(K/β))·∆),
where ∆ = log(VC(H) log T log(K/β)). To achieve this, we first decouple
the process in U1

K into K conditional i.i.d. processes (Proposition 8.5).
We then establish the realizable cumulative error bound on each of the
decoupled sub-sequences (which are conditional i.i.d.). The key technical
justification that allows us to do so is that an ERM rule with additional
realizable samples is still an ERM rule. This allows us to bound the
cumulative error for each decoupled sub-sequence independently even
though we can only access them obliviously. We emphasize that to
bound the realizable cumulative error for ERM rule even for i.i.d.
process is still a non-trivial task, since we require a Pr[suph] type bound
for Lemma 8.6 to apply. To resolve this issue we introduce a novel
perturbation argument, as presented in Lemma 8.18, which provides a
generic way of converting a suph Pr bound to a Pr[suph] bound for any
finite VC class with i.i.d. sampling.

We now have the following regret bounds for VC-class. See Sec-
tion 8.3.4 for detailed proof.
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Corollary 8.11. For VC class H we have

r̃T (H,U1
K) ≤ O

(√
∆ ·KT · VC(H) log3 T

)
under bounded convex losses and r̃T (H,U1

K) ≤ O(∆ ·K · VC(H) log3 T )
under log-loss and bounded mixable losses, where ∆ = log(VC(H) log(KT )).
Moreover, for Kd ≪ T/ log d, we have supH,VC(H)≤d r̃T (H,U1

K) ≥
dmax{K, log(T/d)} under log-loss.

8.3.2 The class Ũσ
1 with threshold functions

We now study the universal smooth process Ũσ1 with fixed (but unknown)
reference measure, where σ ∈ (0, 1] is any positive real 2. We start with
the following reduction. Let µ be an arbitrary distribution over X .
We say a random variable X is K-selection w.r.t. µ if there exists
a deterministic function f such that X = f(V K) ∈ {V1, · · · , VK},
where V K ∼ µ⊗K . We say a random process over X̃T is adversary K-
selection w.r.t. µ if for all t ≤ T the conditional marginals νt(Xt | Xt−1)
are K-selection w.r.t. µ almost surely. In Section 8.3.5, we prove the
following key lemma that relates the class Ũσ1 to the adversary K-
selection processes.

Lemma 8.12. Let A ⊂ X T be any event. If for all adversary K-selection
process X̃T we have Pr[X̃T ∈ A] ≥ 1−β, then for any σ-smooth process
XT ∈ Ũσ1 we have Pr[XT ∈ A] ≥ 1− 2β, provided K ≥ log(T/β)

σ .

Lemma 8.12 shows that to bound the prediction performance for
Ũσ1 it is sufficient to bound the performance of the adversary K-
selection processes. Perhaps surprisingly, this reduction essentially
loses no information, since the adversary K-selection processes are
also ∈ Ũ1/K

1 . This follows from the fact that for any event A we have
Pr[f(V K) ∈ A] ≤ 1 − (1 − PrV∼µ[V ∈ A])K ≤ KPrV∼µ[V ∈ A], i.e.,
the conditional marginals νt must be 1/K-smooth w.r.t. µ.

Our main result of this section is the following stochastic sequential
covering bound for the threshold functions w.r.t. adversary K-selection
processes. See Section 8.3.5 for a detailed proof.

2Note that, the classes U1
K and Ũσ

1 do not include each other, for all σ ∈ (0, 1).
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Theorem 8.13. Let H = {ha(x) = 1{x ≥ a} : x, a ∈ [0, 1]} be the class
of 1-dimension threshold functions and P be the class of all adversary
K-selection processes. Then there exists a stochastic sequential covering
set G w.r.t. P at scale α = 0 and confidence β > 0 such that

log |G| ≤ O(
√
KT log(2KT 2/β)).

Sketch of Proof. We sketch the main idea here and refer to Section 8.3.5
for a detailed proof. We stress that even though the threshold functions
may be simple from a classical learning theory perspective, the proof of
Theorem 8.13 is not. This is due to the complex structure of adversary K-
selection processes. Our proof follows a similar path as in Theorem 7.11
but with a substantially more sophisticated analysis. To do so, we
maintain a realization tree, with each node of the tree labeled by a
subset of H. We expand the leaves of the tree every time we receive
a sample X̃t by splitting the associated subset of H according to the
labels on X̃t. Our main technical contribution is to bound the maximum
depth of the realization tree to be O(

√
KT log(2KT 2/β) w.p. ≥ 1− β.

This relies on a careful analysis of the splitting process. The bound
for the stochastic sequential covering will then follow from a similar
construction as in Theorem 7.11.

We complete this section with the following bounds for the regret.

Corollary 8.14. Let H = {ha(x) = 1{x ≥ a} : x, a ∈ [0, 1]}, then

r̃T (H, Ũσ1 ) ≤ O
(√

(T/σ) log2(T/σ)
)
,

under bounded mixable losses and logarithmic loss. For bounded convex
losses, we have

r̃T (H, Ũσ1 ) ≤ O

√T 3/2 log(T/σ)
σ1/2

 .
Proof. This follows directly by Theorem 8.13, Lemma 8.12 and Propo-
sition 8.6.

Remark 8.3. Corollary 8.14 establishes sublinear regret as long as
σ−1 ≪ T/ log2 T . However, it should be noted that the regrets pre-
sented here are not quantitatively optimal. For recent developments
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that characterize the exact minimax regret for Ũσ1 and general finite
VC classes H, we refer the reader to [77].

8.3.3 Proof of Theorem 8.5

Before we present a formal proof of Theorem 8.5, we first develop some
technical concepts that are necessary for our proof. Let H ⊂ {0, 1}X be
a binary valued class. For any i < j ≤M and xM ∈ XM , we define the
agreed-mismatch number ofH on discrete interval [i, j] := {i, i+1, · · · , j}
to be

AM(H, i, j,xM ) = sup
h1,h2∈H

{
j∑

t=i

1{h1(xt) ̸= h2(xt)} : ∀t < i, h1(xt) = h2(xt)
}
.

Note that the error bound E in Algorithm 8.3 at the end of each epoch
is always a lower bound for the agreed-mismatch number at that epoch
(with i, j being the start and end of the epoch, respectively). We have
the following key lemmas for bounding the agreed-mismatch number:

Lemma 8.15. Let H ⊂ {0, 1}X be a class of finite VC-dimension and µ
be an arbitrary distribution over X . Then for any i < j ≤M ∈ N+, we
have for all E ≥ 0

PrxM ∼µ⊗M

[
AM(H, i, j,xM ) ≥ E

]
≤ e2VC(H) log j−(i·E)/j .

Proof. We use a symmetric argument as in the proof of Lemma 8.2.
The event AM(H, i, j,xM ) ≥ E is equivalent to

A =
{
∃h1, h2 ∈ H s.t. ∀t < i, h1(xt) = h1(xt) and

j∑
t=i

1{h1(xt) ̸= h2(xt)} ≥ E
}
.

By symmetries of i.i.d. samples, we can fix xj and perform a uniform
random permutation π over [j]. Now, for the event A to happen, there
must be some h1, h2 ∈ H that differ on at least E positions in xj .
Denote B ≥ E to be the number of mismatches of h1, h2 on xj . In order
for the event A to happen, one must not switch any t ∈ [i, j] for which
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h1(xt) ̸= h2(xt) to [1, i− 1] under permutation π. This happens with
probability upper bounded by (using a simple combinatorial argument):(j−i

B

)( j
B

) ≤ (1− i

j

)B
≤ e−(i·B)/j ≤ e−(i·E)/j ,

where we have used the fact that a
b ≥

a−t
b−t for all b ≥ a ≥ t and e−(i·B)/j

is decreasing on B.
The lemma follows by applying a union bound on all the pairs (h1, h2)

restricted on xj and an application of Sauers’s lemma (Lemma 2.1), and
Prxj [A(xj)] ≤ supxj Prπ[A(xπ(j))] due to symmetries of i.i.d. samples.

The following lemma is the key element of our proof.

Lemma 8.16. Let H ⊂ {0, 1}X be a class of finite VC-dimension and
µ be an arbitrary distribution over X . For any E ≤ M ∈ N+ and
xM ∈ XM , we denote by A the event that there exists

n >
logM

log(E/(2VC(H) logM + log(M2/β)))
and 1 = i1 < i2 < · · · < in+1 = M such that

∀j ≤ n, AM(H, ij , ij+1,xM ) ≥ E.

Then
PrxM ∼µ⊗M [A] ≤ β.

Proof. Let Bi,j be the event that {AM(H, i, j,xM ) ≥ E and j ≤ (E ·
i)/(2VC(H) logM + log(M2/β))}. By Lemma 8.15, we have for all i, j
and β > 0

Pr[Bi,j ] ≤
β

M2 .

Using the union on all the pairs (i, j), we have

Pr[∃i, j, Bi,j ] ≤ β.

Let B = ⋂
i,j ¬Bi,j . Then Pr[B] ≥ 1− β. Note that the event ¬Bi,j

implies that if AM(H, i, j,xM ) ≥ E then

j ≥ E · i
2VC(H) logM + log(M2/β) .
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Conditioning on the event B happening, we have, if event A (defined in
the statement of Lemma 8.16) happens then

∀j ≤ n, ij+1 ≥ (E · ij)/(2VC(H) logM + log(M2/β)),

since event A implies AM(H, ij+1, ij ,xM ) ≥ E for all j ≤ n. Note that
i2 ≥ E, hence by induction

in+1 ≥
(

E

2VC(H) logM + log(M2/β)

)n
.

However, since we also have in+1 ≤M , we must have

n ≤ logM
log(E/(2VC(H) logM + log(M2/β))) .

This contradicts the definition of A (the event A requires number n to
be larger than the above quantity) and implies that conditioning on
event B, event A cannot happen. Therefore, we have Pr[A | B] = 0, i.e.,
Pr[A ∩B] = 0. This implies

Pr[A] = Pr[A ∩B] + Pr[A ∩ ¬B] ≤ Pr[A ∩ ¬B] ≤ Pr[¬B] ≤ β

as needed.

Remark 8.4. We remark that the results in both Lemma 8.15 and 8.16
hold for a general exchangeable process as well. Note that these two
results cannot be applied directly on the processes in U1

K since they
require the underlying process to be exchangeable. Our key approach,
as in Proposition 8.5, is to decouple the process in U1

K into conditional
i.i.d. processes.

We now prove the upper bound of Theorem 8.5.

Proof of Theorem 8.5 (Upper Bound). Let νννT ∈ U1
K be an arbitrary

dynamic changing process with cost K. We denote by XT the random
process generated by νννT . Note that the main difficulty here is to deal
with the dependency among the samples in XT . Our key idea is to
extend the sample XT into a coupled sample V KT such that the first T
samples in V KT match XT and each conditional distribution selected
for generating XT contributes exactly T samples in V KT . We denote



8.3. Regret for Unknown Distributions: Universal Case 139

V (k) = Vk1 , · · · , VkT
to be the samples generated by the kth conditional

distribution (that is used to generate XT ), where k ≤ K. We also denote
by X(k) the truncated sample of V (k) on V T . By Proposition 8.5, V (k) is
a conditional i.i.d. process, conditioning on V k1−1. Therefore, the uncon-
ditioned process V (k) is a mixture of i.i.d. processes, thus exchangeable.
Note that the truncated process X(k) need not be exchangeable.

Taking N =
√

(T · VC(H) log T )/K in Algorithm 8.1, we show that
the claimed regret upper bound holds. Let E = N/K and

n = log T
log(E/(2VC(H) log T + log(T 2K/β))) + 1.

We show that w.p. ≥ 1− β, the parameter s in Algorithm 8.1 is upper
bounded by nK. Suppose otherwise, we have the algorithm reenter
the while loop at least nK times. Denote i1 < i2 < · · · < iKn to be
the time steps of reentering the while loop. Note that by construction
of Algorithm 8.3, we exit the while loop only if the agreed-mismatch
number at current phase is larger than N . Therefore, we have, for
each of the phases il+1 − il, there must be some k ≤ K such that
X(k) contributes at least N/K mismatches. This implies that there
exists some k ≤ K and indexes t1, · · · , tn (which is a sub-sequence of
i1, · · · , inK) such that X(k) contributes at least N/K mismatches in
all the phases tj+1 − tj with j ≤ n (note that here the phase tj+1 − tj
may combine multiple phases of form il+1 − il). Therefore, the agreed-
mismatch number restricted only on X(k) at each phase tj+1 − tj is
larger than N/K. This is because the phase tj+1 − tj includes a sub-
phase il+1 − il such that the agreed-mismatch number restricted on
X(k) for the sub-phase is larger than N/K. Taking h1, h2 to be the
functions that whiteness such a agree-mismatch number, we have h1, h2
also agrees on xtj−1 and differs on at least N/K positions on tj+1 − tj .
Hence the agree-mismatch number restricted on X(k) on phase tj+1− tj
is also larger than N/K. Since X(k) is a prefix of V (k), this implies the
event of Lemma 8.16 restricted on V (k) happens. By Lemma 8.16 and
exchangability of V (k), we have the event A in Lemma 8.16 with the
selected n happens w.p. ≤ β/K for each V (k). Using a union bound on
all the V (k)s we have the assumed event (i.e., s > nK) happens w.p.
≤ β.
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Taking β = 1
T and conditioning on the event s ≤ nK, we now split

the regret into two parts – one that is incurred by the mismatches and
the other incurred by the adaptive EWA algorithm. Let T1, · · · , Ts be
the lengths of the the epochs. We have, by standard results of Chapter 3,
that the regret contributed by EWA algorithm is upper bounded by

s∑
a=1

√
4Ta · VC(H) log T ≤

√
4sT · VC(H) log T

≤ O(
√
KT · VC(H) log T ).

where the first inequality follows from Cauchy–Schwartz and ∑a Ta = T ,
while the second inequality follows from s ≤ nK and n = O(1/ϵ) pro-
vided K ≪ (T (1−ϵ)/(VC(H) log T ))1/3. For the number of mismatches,
each epoch contributes at most N mismatches and there are at most s
epochs, therefore the number of mismatches is upper bounded by

sN ≤ O(
√
KT · VC(H) log T ).

Finally, the bad event s > nK contributes at most O(1) regret,
since the loss is bounded by 1 and the event happens with probability
≤ 1

T .

Remark 8.5. Note that the upper bound in Theorem 8.5 can be made
adaptive to K (i.e., without knowing K) as well via a simple doubling
trick. To see this, we set K = 1 initially and run Algorithm 8.1 as in
the proof above. Once the algorithm has updated for more than nK

epochs, we update K being 2K and rerun the algorithm with the new
K. Taking β = 1

T 2 , we have by union bound (on the updates of K) w.p.
≥ 1− 1

T there can be at most ⌈logK⌉ updates if the process is in U1
K .

Therefore, the regret is upper bounded by

⌈logK⌉∑
k=1

O

(√
2kT · VC(H) log T

)
= O

(√
KT · VC(H) log T

)
,

as needed.

We now prove the lower bound of Theorem 8.5.
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Proof of Theorem 8.5 (Lower Bound). Let X = [0, 1] × {1, 2, · · · , d}.
We construct the following class of product threshold functions

H = {ha(x, b) = 1{x ≥ ab} : a ∈ [0, 1]d, (x, b) ∈ [0, 1]× [d]}.

It is easy to see that VC(H) = d, since the set (0.5, 1), · · · , (0.5, d) is
shattered by H, and any d+ 1 points must have two points with the
same index in [d], which cannot be shattered by H.

We now describe a strategy for selecting yT and {ν1, · · · , νK} that
achieve the claimed lower bound for any prediction rule (possibly ran-
domize) under absolute loss. Let τ be a Littlestone tree for threshold
functions {ha(x) = 1{x ≥ a} : a, x ∈ [0, 1]} of depth K, which is a
[0, 1]-valued full binary tree such that each path can be realized by a
threshold function (see e.g., [35]). This must exist since threshold func-
tions have infinite Littlestone dimension. We take d copies {τ1, · · · , τd}
of τ (i.e., the Littlestone forest). We select yT uniformly from {0, 1}T
and select the νks in the following manner: let I1, · · · , Id be d pointers
such that each Ib points to a node in τb for all b ∈ [d]; initially all the
Ibs point to the roots of τbs, respectively. We partition the time horizon
into K epochs, each of length T/K. At the beginning of the kth epoch,
we define the distribution

νk = Uniform{(V(I1), 1), (V(I2), 2) · · · , (V(Id), d)},

where V(Ib) ∈ [0, 1] denotes the value of the node in τb pointed to by
index Ib. After the epoch k, we update the indices Ibs in the following
manner: for any b ∈ [d], if the number of 0s is more than the number of
1s for the labels in yT corresponding to sample (V(Ib), b) during epoch
k, we move Ib to its left child, and move to its right child otherwise.

We now show that the strategy described above achieves a regret
lower bound Ω(

√
KdT ) for any prediction rule provided T

8Kd ≥ log(2Kd).
To see this, we note that by the selection of yT , any prediction rule must
incur T/2 actual expected cumulative loss. For any k ∈ [K] and b ∈ [d],
we denote nk,b to be the number of appearances of (V(Ib), b) during
epoch k. We have by the multiplicative Chernoff bound [78, Theorem
4.5(2)] that

Pr
[
nk,b ≥

T

2Kd

]
≥ 1− e−T/(8Kd).
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Assuming T
8Kd ≥ log(2Kd), then by union bound on all pairs (k, b), w.p.

≥ 1
2 , nk,b ≥ T

2Kd for all k ∈ [K] and b ∈ [d]. We now condition on that
such an event happens, which is independent of yT . By the Khinchine’s
inequality, discussed in Chapter 2, the expected number of 1s of the
labels corresponding to (V(Ib), b) in epoch k is bounded away from nk,b

2
by
√
nk,b/8 ≥

√
T/(16Kd). By our selection of νks, we know that there

must be some h ∈ H such that the difference of the expected (over
randomness of yT ) cumulative losses incurred by the predictor and by
h is lower bounded by:

K∑
k=1

d∑
b=1

√
T/(16Kd) ≥

√
KdT/16.

This implies that there must exist some yT such that the regret against
the predictor is lower bounded by

√
KdT/16. Since our conditioning

event on xT happens w.p. ≥ 1/2, the expected worst case regret is lower
bounded by

√
KdT/64.

Finally, to see the unconditional Ω(
√
KT ) lower bound, we can

replicate the argument above with b = 1 and note that nk,1 = T/K

holds always without invoking the multiplicative Chernoff bound.

We now provide a supplement to Example 8.3 that demonstrates
the failure of the epoch approach with any predefined epochs.

Example 8.4. Let H, ν1, ν2 be as in Example 8.3. Now, for any prede-
fined epochs and number M , there are two cases: (i) there exists an
epoch of length larger than M ; (ii) all of the epochs have lengths less
than M . For case (i), we can replicate the argument as in Example 8.3
to obtain an Ω(M) lower bound. For case (ii), we use ν2 to generate
samples for all the T steps. Since the EWA algorithm is deterministic for
absolute loss (though it can be interpreted as a randomized algorithm
for miss-classification loss), by standard lower bounds (e.g., [35, Lemma
14]) for any n ∈ [T ], there must be some yn and hi ∈ {h1, h2} such
that the regret of EWA on yn against hi is lower bounded by Ω(

√
n).

Denote n1, · · · , nL to be the length of all epochs such that nl ≤M for
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all l ∈ [L]. We claim that:

L∑
l=1

√
nl ≥ (T −M)/

√
M. (8.4)

This follows from the inequality
√
a+ 1 +

√
b− 1 ≤

√
a+
√
b for a ≥ b

(since the function
√
x −
√
x− 1 is monotone decreasing). Therefore,

one can "merge" the nls with as many components equal to M as
possible, yet the LHS of (8.4) does not increase. Since there are at
least (T −M)/M such components after the "merge", (8.4) holds. By
the above discussion, each epoch l corresponding to some ynl and hil
with regret of EWA against hi is lower bounded by Ω(√nl). Therefore,
there must be a subset A ⊂ [L] corresponding to the same hi such
that ∑l∈A

√
nl ≥ (T −M)/(2

√
M). We choose the label ynl at epoch

l for l ∈ A and the label hi(x2) for all other epochs. This yields the
lower bound Ω((T −M)/

√
M) hence also Ω(max{M, (T −M)/

√
M}) ≥

Ω(T 2/3), where the minimum is attained when M = T 2/3 leading to
r̃T ≥ Ω(T 2/3).

8.3.4 Proof of Theorem 8.10 and Corollary 8.11

For any hypothesis class H ⊂ YX , the ERM rule is any function
ERM : (X × Y)∗ → H such that for all t ≥ 1 and (xt, yt) ∈ (X × Y)t,
we have

t∑
i=1

1{ERM(xt, yt)[xi] ̸= yi} = inf
h∈H

t∑
i=1

1{h(xi) ̸= yi}.

Let Φ : (X × Y)∗ → YX be a prediction rule, h ∈ H and xT ∈ X T , we
denote the cumulative error of Φ under the realizable sample of h on
xT as (recall the definition in (8.3)):

err(Φ, h,xT ) =
T∑
t=1

1{Φ(xt−1, {h(x1), · · · , h(xt−1)})[xt] ̸= h(xt)}.

We begin with the following high probability cumulative error bound
for the ERM rule under realizable i.i.d. sampling:
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Lemma 8.17. Let H ⊂ {0, 1}X be any class with finite VC-dimension
and ERM be an arbitrary ERM rule of H. Then for any distribution µ

over X and β > 0 we have w.p. ≥ 1− β over xT ∼ µ⊗T

sup
h∈H

err(ERM, h,xT ) ≤ O((VC(H) log2 T + log(1/β) log T ) ·∆)

where ∆ = log(VC(H) log T log(1/β)) and O hides absolute constant
independent of VC(H), T, β.

Note that even though the samples xT in Lemma 8.17 are i.i.d., the
predictions made by ERM rule are not independent, which is the main
technical difficulty in proving Lemma 8.17. To resolve this issue, we first
establish the following key lemma which provides a general approach
for converting a suph E type bound to a E suph bound. Our main
proof technique is a perturbation argument, which is the main technical
contribution of this section. For any prediction rule Φ : (X ×{0, 1})∗ →
{0, 1}X and I ⊂ [T ], we define a perturbed function ΦI such that for
all xt, yt we have

ΦI(xt, yt) = Φ(xt, ỹt),
where ỹt = yt if t ̸∈ I and ỹt = 1− yt if t ∈ I.

Lemma 8.18. Let H ⊂ {0, 1}X be a class of finite VC-dimension, µ be a
distribution over X , and Fϵ is an ϵ-cover of H w.r.t. µ (see Lemma 8.2),
where ϵ = 1

2T 2 . Then for any prediction rule Φ : (X ×{0, 1})∗ → {0, 1}X
we have for all m,n ∈ N+

PrxT ∼µ⊗T

[
sup
h∈H

err(Φ, h,xT ) ≥ m+ 3VC(H) + n

]

≤ PrxT ∼µ⊗T

[
sup
f∈Fϵ

sup
I⊂[T ],|I|≤3VC(H)+n

err(ΦI , f,xT ) ≥ m
]

+ 1
Tn

.

Proof. Let A be the event that

A =
{

xT : sup
h∈H

inf
f∈Fϵ

T∑
t=1

1{h(xt) ̸= f(xt)} ≤ 3VC(H) + n

}
.

We have by Lemma 8.2 that Pr[A] ≥ 1 − 1
Tn (taking M = T in the

lemma). Conditioning on the event A happening, we have for all h ∈ H,
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there exists f ∈ Fϵ such that there are at most 3VC(H) + n positions
t ∈ [T ] such that h(xt) ̸= f(xt). Denote I ⊂ [T ] to be the set of such
positions. Then Φ and ΦI have the same outputs on xt with labeling of
h for all t ∈ [T ]; meaning that

err(Φ, h,xT )− err(ΦI , f,xT ) ≤ 3VC(H) + n,

since only the positions for which h(xt) ̸= f(xt) contribute 1 to the
difference of errors. This implies

sup
h∈H

inf
f∈Fϵ

inf
I

err(Φ, h,xT )− err(ΦI , f,xT ) ≤ 3VC(H) + n.

The result follows by noting that

sup
h∈H

inf
f∈Fϵ

inf
I

[err(Φ, h,xT )− err(ΦI , f,xT )] =

= sup
h∈H

err(Φ, h,xT )− sup
f∈Fϵ

sup
I

(ΦI , f,xT ),

and removing the conditioning on A by a union bound.

Lemma 8.18 is interesting since it reduces an event of form suph
with infinite H to an event of form supf,I with finite Fϵ and {I ⊂ [T ] :
|I| ≤ 3VC(H) +n}. The latter can be handled using union bounds if we
are able to obtain a high probability error bound for ΦI for any such f
and I. The following lemma establish such a result for ERM rule with
i.i.d. sampling.
Lemma 8.19. Let H ⊂ {0, 1}X be a class of finite VC-dimension, µ be
a distribution over X . For any h ∈ H and I ⊂ [T ] with |I| ≤ e for some
integer e ≥ 1, we have for all β > 0

PrxT ∼µ⊗T

[
err(ERMI , h,xT ) ≥ O(log T (VC(H) log T + e+ log(1/β)) ·∆)

]
≤ β,

where ∆ = log(eVC(H) log T log(1/β)), ERM is any ERM rule, and O

hides absolute constant independent of e,VC(H), T, β.
Proof. Fix any h ∈ H and I ⊂ [T ] with |I| ≤ e. We denote by
ERMI

t the function generated by ERMI using samples xt, yt. Let errt =
Prx∼µ[ERMI

t (x) ̸= h(x)]. We now claim that for all t ∈ [T ] we have

Prxt∼µ⊗t [errt ≥ O

(
(VC(H) log t+ e+ log(1/β)) log(eVC(H) log t log(1/β))

t

)]
≤ β. (8.5)
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To see this, we use a symmetric argument. Let S1, S2 be two i.i.d.

samples of µ both of length t. For any h1, h2 ∈ H, we define distance
d(h1, h2) = Prx∼µ[h1(x) ̸= h2(x)]. We define two events

Ah1 =

∃h′ ∈ H, d(h, h′) ≥ ϵ and
∑
s∈S1

1{h′(s) ̸= h(s)} ≤ e

 ,
and

Ah2 =

∃h′ ∈ H, d(h, h′) ≥ ϵ and
∑
s∈S1

1{h′(s) ̸= h(s)} ≤ e but

∑
s∈S2

1{h′(s) ̸= h(s)} ≤≤ ϵt/2

 .
Using the same argument as in Lemma 8.2, we have Pr[Ah1 ] ≤ 2Pr[Ah2 ].
By symmetries of i.i.d. distributions we can fix S1 ∪ S2 and perform a
random permutation π that switches coordinate i of S1 and S2 w.p. 1

2
and independent of different i ∈ [t]. In order for the event Ah2 to happen
we cannot switch more than e elements for which ERMI

t (s) ̸= h(s) with
s ∈ S2 to S1. This happens with probability upper bounded by

1
2ϵt/2

e∑
i=0

(
ϵt/2
i

)
≤ 2−ϵt/2+(e+1) log(ϵt/2).

Using a union bound on functions of H restricted on S1 ∪ S2, we have

Pr[Ah2 ] ≤ 2VC(H) log t−ϵt/2+(e+1) log(ϵt/2).

Taking

ϵ = c ·
((VC(H) log t+ e+ log(2/β)) log(eVC(H) log t log(2/β))

t

)
one can make Pr[Ah2 ] upper bounded by β/2 for some absolute constant
c > 0. The Claim (8.5) follows by noting that errt ≥ ϵ implies event Ah1
happens by construction of ERMI .

We now upper bound the cumulative errors of ERMI . Let event

Gt =
{

errt ≤ c ·
(

(VC(H) log t+ e+ log(4T/β)) log(eVC(H) log t log(4T/β))
t

)}
,
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and indicator

It = {ERMI
t−1(xt) ̸= h(xt) and Gt−1}.

We have Pr[Gt] ≥ 1−β/(2T ) for all t ≤ T . Note thatGt−1 is independent
of xt, thus we have (since It = 1 happens only when Gt−1 occurs and
ERMI

t−1(xt) ̸= h(xt))

E[It | I1, · · · , It−1] ≤ c

(
(VC(H) log t+ e+ log(4T/β)) log(eVC(H) log t log(4T/β))

t

)
.

(8.6)
By Lemma 8.8 with K = 1, C being the numerator of Equation (8.6)
and upper bound log t by log T , we have for sufficiently large T that

Pr
[

T∑
t=1

It ≥ 4c · log T (VC(H) log T + e+ log(4T/β)) ·∆ + log(2/β)
]
≤ β/2,

where ∆ = log(eVC(H) log T log(4T/β)). Note that, the events G =
∩t∈[T ]Gt−1 and ERMI

t−1[xt] ̸= h(xt) together imply that It = 1. There-
fore, using the fact that Pr[A] ≤ Pr[A∩G] + Pr[¬G] ≤ Pr[A∩G] + β/2
for any event A, we conclude

PrxT ∼µ⊗T

[
err(ERMI , h,xT ) ≥ O(log T (VC(H) log T + e+ log(1/β)) ·∆)

]
≤ β.

This completes the proof.

Proof of Lemma 8.17. By Lemma 8.18, it is sufficient to upper bound

PrxT ∼µ⊗T

[
sup
f∈Fϵ

sup
I⊂[T ],|I|≤3VC(H)+n

err(ΦI , f,xT ) ≥ m
]
. (8.7)

We now take n = log(2/β)/ log T in Lemma 8.18, i.e., 1
Tn = β/2. By

Lemma 8.19 with e = 3VC(H) + n together with a union bound on Fϵ
and {I ⊂ [T ] : |I| ≤ 3VC(H) + n} and letting

m = O(log T (VC(H) log T + e+ log(2B/β)) ·∆)

where ∆ = log(eVC(H) log T log(2B/β)) and B = |Fϵ| · |{I ⊂ [T ] :
|I| ≤ 3VC(H) + n}|, one can make the error probability (8.7) upper
bounded by β/2. We now observe that log |Fϵ| ≤ O(VC(H) log T ) and
log |{I ⊂ [T ] : |I| ≤ 3VC(H)+n}| ≤ O(VC(H) log T+log(1/β)). Putting
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everything together and simplifying the expression, we have w.p. ≥ 1−β
over xT ∼ µ⊗T

sup
h∈H

err(ERM, h,xT ) ≤ O(log T (VC(H) log T

+ log(1/β)) log(VC(H) log T log(1/β))).

This completes the proof.

The following lemma is the key element in our proof.

Lemma 8.20. For any random process XT ∈ U1
K , we denote V KT and

V (k) = Vk1 , · · · , VkT
for k ∈ [K] as in Proposition 8.5. We have for all

k ∈ [K] w.p. ≥ 1− β over V KT

sup
h∈H

T∑
t=1

1{ERM(V kt−1, {h(V1), · · · , h(Vkt−1)})[Vkt ] ̸= h(Vkt)} ≤

O((VC(H) log2 T + log T log(1/β)) log(VC(H) log T log(1/β))),

where ERM is any ERM rule and O hides absolute constant independent
of VC(H), T and log(1/β).

Proof. By Proposition 8.5, we have V (k) is an i.i.d. process conditioning
on V k1−1. The key observation is that the ERM rule over V KT restricted
on V (k) is still an (randomized) ERM rule, since we have assumed that
the samples are realizable. Conditioning on any V k1−1, the upper bound
then follows by Lemma 8.17 since it only requires that the ERM rule at
each time step kt is independent of Vkt and it does not depend on how
the ERM functions are selected (even if the selections are randomized).
To remove the conditioning on V k1−1, we use the following law of total
probability: for any event A ⊂ V KT we have

Pr[A] = EVk1−1

[
Pr[A | V k1−1]

]
≤ sup

k1,Vk1−1

Pr[A | V k1−1].

The lemma now follows by taking A to be the event in the statement of
the lemma.

We now ready to prove Theorem 8.10.
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Proof of Theorem 8.10. We first observe that for any prediction rule
the cumulative error on XT is less than the cumulative error on V KT .
Using Lemma 8.20 and a union bound on all the K subsequences V (k),
we have for any ERM rule ERM, w.p. ≥ 1−β over V KT , the cumulative
error

sup
h∈H

err(ERM, h, V KT ) ≤ O(K(VC(H) log2 T + log T log(K/β)) ·∆),

where ∆ = log(VC(H) log T log(K/β)). Since we have the following
err(ERM, h,XT ) ≤ err(ERM, h, V KT ), the sequential covering size then
follows by Lemma 8.6.

Finally, we prove Corollary 8.11.

Proof of Corollary 8.11. The upper bounds follow directly by Proposi-
tion 8.6 and Theorem 8.10 by taking β = 1

T . We only need to prove the
lower bound for log-loss. For the Ω(Kd) lower bound, we consider the
same hard class H as in the lower bound proof of Theorem 8.5 and the
Littlestone forests τ1, · · · , τd with pointers Ibs. We partition the time
steps into K epochs. At each epoch k, we use the same νk as in the
lower bound proof of Theorem 8.5 to generate samples. We move to
the next epoch if all elements in the support of νk (which is a uniform
distribution) have appeared at least once in the sample. We then change
the pointers Ib of each tree τb in the following manner: if the prediction
made by the predictor on the first appearance of (V(Ib), b) is ≥ 1

2 , we
update Ib to its left child, and update to right child if the prediction is
< 1

2 . It is easy to verify that the expected regret is lower bounded by
Ω(Kd), provided Kd≪ T/ log d by the coupon collector problem. The
lower bound for Ω(d log(T/d)) as discussed in Chapter 7.5.

8.3.5 Proof of Lemma 8.12 and Theorem 8.13

Proof of Lemma 8.12. The proof is an operational interpretation of
the coupling argument as in Proposition 8.3. Let µ be the reference
measure that defines the σ-smooth process XT (with νννT being the joint
distribution of XT ). For any m ∈ N, we denote V mT to be an i.i.d.

process with marginal µ and ImT to be an i.i.d. process with marginal
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of uniform distribution over [0, 1] that is independent of V mT . We now
construct a coupling between XT and V mT , ImT . Suppose we have
constructed Xt−1, we have that the conditional density νt = νt(Xt |
Xt−1) is determined and we denote the density vt(x) = dνt

dµ . To construct
Xt, we define the random set St as in Proposition 8.3 in the following
manner: for any Vm(t−1)+i with i ∈ [m], if σvt(Vm(t−1)+i) ≥ Im(t−1)+i,
we include Vm(t−1)+i to St (and do not include otherwise). If St is not
empty, we select the first element in St as Xt, else we sample a fresh
independent sample X ′

t ∼ νt and let Xt = X ′
t. It is easy to verify that the

constructed process is distributed w.r.t νννT . Note that the main difference
with the proof of Proposition 8.3 is that we used the random variables
ImT on the selection of St instead of the Bernoulli(σvt(Vm(t−1)+i))
random variables (it is easy to check these two construction results in
the same distribution of St).

We now denote Rt = {Im(t−1)+1, · · · , Imt}, where Rt is independent
of {Vm(t−1)+1, · · · , Vmt}. The above coupling process can be expressed
as Xt = f(Rt, X ′

t, {Vm(t−1)+1, · · · , Vmt}), where f is a deterministic
function, such that w.p. ≥ 1− Te−mσ over RT , X ′T , V mT

∀t ∈ [T ], f(Rt, X ′
t, {Vm(t−1)+1, · · · , Vmt}) ∈ {Vm(t−1)+1, · · · , Vmt}.

Let f̃ be the truncated function of f such that if ∀i ∈ [m], σvt(Vm(t−1)+i) <
Im(t−1)+i we set

f̃(Rt, {Vm(t−1)+1, · · · , Vmt}) = Vm(t−1)+1

and set f̃(Rt, {Vm(t−1)+1, · · · , Vmt}) = f(Rt, {Vm(t−1)+1, · · · , Vmt}) oth-
erwise. We write

X̃t = f̃(Rt, {Vm(t−1)+1, · · · , Vmt}).

It is easy to see that w.p. ≥ 1 − Te−mσ over the joint distribution
(XT , X̃T ) that ∀t ∈ [T ], Xt = X̃t. We now observe that conditioning on
RT , X̃T is an adversary m-selection process (since ImT is independent of
V mT and X̃T is independent of X ′T ). Therefore, we have by conditioning
on RT that

Pr
[
X̃T ∈ A

]
= E

[
Pr
[
X̃T ∈ A | RT

]]
≥ 1− β.
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Using a union bound we have

Pr
[
XT ∈ A

]
≥ 1− β − Te−mσ.

Taking m = K and the assumption that K ≥ log(T/β)
σ , one finishes the

proof.

Proof of Theorem 8.13. Let X̃T be an adversary K-selection process
with reference measure µ over [0, 1]. We assume that for any x ∈
[0, 1], µ({x}) = 0. This assumption can be eliminated with a more
tedious argument. However, we make the assumption here for clarity of
presentation.

We consider the following random partitions of interval [0, 1]. Initially,
the partition I0 consists of only the interval [0, 1]. At each time step t,
we denote It−1 to be the current partition. Let Jt ∈ It−1 be the interval
for which X̃t ∈ Jt, we split Jt into two parts with values < X̃t and ≥ X̃t

respectively (if X̃t is the end point of Jt, we do not split and remain on
the same Jt). We then replace Jt with the newly split intervals in It−1 to
form the partition It. Note that one may view this partitioning process
as expanding a binary tree with each node labeled by the intervals in
It and expanding a leaf when the corresponding interval is split into
two parts. Such a tree can be viewed as the (compressed) realization
tree in Theorem 7.11 if we view the It as subsets of H. Our goal is to
bound the maximum depth of the tree.

For any time step t, we denote Jt = [at, bt] to be the interval for
which X̃t ∈ Jt and

λt = max{µ([at, Xt]), µ([Xt, bt])}
µ([at, bt])

to be the splitting ratio of Jt. We claim that for any α > 0,

Pr
[
λt ≥ 1− α | X̃t−1

]
≤ 2αK. (8.8)

To see this, we denote It−1 = {J1, · · · , Jnt} to be the partition at time
t before receiving X̃t, where Jt ∈ It−1 and nt ≤ t. For any interval
J i = [ai, bi] ∈ It−1, we define the α-margin of J i w.r.t. µ to be the
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intervals [ai, ci] and [di, bi] such that:

ci = sup{x ∈ [ai, bi] : µ([ai, x]) ≤ αµ([ai, bi])}
di = inf{x ∈ [ai, bi] : µ([x, bi]) ≤ αµ(ai, bi)}.

Let V t
1 , · · · , V t

K be the i.i.d. samples of µ that is used to generate X̃t

and Bt(α) be the event that there exists some V t
k and J i ∈ It−1 such

that V t
k is in the α-margin of interval J i. Note that for any given V t

k ,
the probability that V t

k is in the α-margin of some interval in It−1 is
upper bounded by 2α. We have by independence of V t

k s that

Pr[Bt(α)] ≤ 1− (1− 2α)K ≤ 2αK.

By definition of adversary K-selection, we have the conditional event
{λt ≥ 1 − α | X̃t−1} implying that the event Bt(α) happens, i.e., the
Equation (8.8) follows.

Let It = 1{λt ≥ 1−α}. Then E[It | It−1] ≤ 2αK and I ′
t = It−E[It |

It−1] form martingale differences. Using Azuma’s inequality [9, Lemma
A.7] for all α > 0

Pr
[
T∑
t=1

It ≥ 2αKT + x

]
≤ Pr

[
T∑
t=1

I ′
t ≥ x

]
≤ e−2x2/T . (8.9)

Taking x ≥
√
T log(2T/β), one can make the above probability less

than β/(2T ). This implies that for any n ≤ T and α = n−
√
T log(2T/β)
4KT ,

w.p. ≥ 1− β/(2T ), for any λt1 , · · · , λtn , we have

n∑
i=1

(1−λti) ≥
(
n−

(
2αKT +

√
T log(2T/β)

))
α ≥

(
n−

√
T log(2T/β)

)2

8KT ,

(8.10)
where the first inequality follows by the fact that It = 1 implies 1−λt ≤
α. Using a union bound on all n ≤ T , we have w.p. ≥ 1− β/2 that for
any n ≤ T and λt1 , · · · , λtn , we have:

n∑
i=1

(1− λti) ≥

(
n−

√
T log(2T/β)

)2

8KT . (8.11)

We now claim that w.p. ≥ 1−β/2, for any interval Jt either µ(Jt) ≥
β

2KT 2 or Jt is in the final partition. To see this, we note that for any
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interval Jt at time step t, once µ(Jt) ≤ β
2KT 2 , the probability it will be

split at any following time step is upper bounded by (using the same
argument for bounding the event Bt(α))

T

(
1−

(
1− β

2KT 2

)K)
≤ β

2T .

Using a union bound on all the T intervals, w.p. ≥ 1− β/2, all Jts will
either satisfy µ(Jt) ≥ β

2KT 2 or that Jt is in the final partition. By union
bound, w.p. ≥ 1 − β, this happens simultaneously with the event of
Equation (8.11). Conditioning on such a joint event, suppose now there
exists a decreasing chain Jt1 ⊋ Jt2 · · · ⊋ Jtn , hence

µ(Jtn) ≤
n∏
i=1

λti ≤ e
−
∑n

i=1(1−λti ).

This implies that if

n >
√

8KT log(2KT 2/β) +
√
T log(2T/β),

then µ(Jtn) < β
2KT 2 and therefore the chain must terminate.

Combining all of the above results, we conclude w.p. ≥ 1− β that
there is no decreasing chain of length greater than√

8KT log(2KT 2/β) +
√
T log(2T/β) + 1

i.e., the realization tree has maximum depth upper bounded by the fol-
lowing O(

√
KT log(2KT 2/β)). The bound on the stochastic sequential

covering now follows by the same argument as in Theorem 7.11.
For the reader’s convenience, we outline the argument in the fol-

lowing discussion. We construct a sequential function set G with fixed
index set W of size |W| = 2⌈

√
15KT log(2KT 2/β)⌉, i.e., for each w ∈ W,

we construct a sequential function gw : X ∗ → {0, 1}. To do so, we
maintain for each node in the realization tree a subset ofW . We initially
associate W to the root. At each time step after receiving X̃t, for each
node v in the realization tree, if v splits at the current step, we split the
associated subset Wv ⊂ W into two disjoint subsets of equal size and
associate them to the newly split nodes, respectively. For any w ∈ Wv,
we assign the value gw(X̃t) = 0 if w is in the subset associated to
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the new left child and gw(X̃t) = 1 otherwise. If the node v does not
split, we assign gw(X̃t) to be the value on the agreed label (of the
subset of H associated to v, see construction of realization tree at the
beginning of the proof) on X̃t. The process is said to have failed, if at
some step a node v splits but the associated set |Wv| ≤ 1. Clearly, if the
process does not fail until time T , the constructed set G sequentially
covers H on X̃T . Now, the key observation is that, from the discussion
above, w.p. ≥ 1 − β on X̃T , any node is constructed after at most√

8KT log(2KT 2/β) +
√
T log(2T/β) + 1 ≤ ⌈

√
15KT log(2KT 2/β)⌉

splits. Since any split will decrease the associated subset of W by ex-
actly 1

2 , we know that the process does not fail w.p. ≥ 1 − β since
|W| = 2⌈

√
15KT log(2KT 2/β)⌉. Therefore, the constructed set G stochastic

sequential covers H at scale 0 and confidence β by Definition 7.1.
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The concept of the smoothed adversary was first introduced by [25] and
later developed by [27], [28], [75]. Notably, the key technical ingredi-
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reference measures, and the results developed in this chapter, are based
on [79]. We also refer to [77] for recent developments on minimax regret
under the unknown distribution setting.



9
Constructive Algorithms for Minimax Regret

We have demonstrated in Chapters 7 and 8 general approaches for
deriving tight minimax regret for the hybrid online setting via the
concept of stochastic sequential covering. However, a major limitation
of this approach is that the covering size can be exponentially large,
rendering it computationally intractable.

This chapter introduces algorithmic primitives that address this gap
through a reduction to the Empirical Risk Minimization (ERM) oracle,
while still achieving sublinear regret.

9.1 Prelimilaries

We consider a slightly different formulation of the expected worst-case
regret that is more suitable for our algorithmic treatment. Let X be
the instance (feature) space, and let H ⊂ [0, 1]X be a function class
mapping X → [0, 1]. Recall the following hybrid online learning scenario:
Nature selects an (unknown) distribution µ over X at the start of the
game. At each time step t, Nature independently samples xt ∼ µ and
then adversarially selects yt ∈ [0, 1], but only reveals xt to the learner.
A predictor then (randomly) generates ŷt ∈ [0, 1] based on the past
inputs and outcomes, i.e., xt = {x1, . . . ,xt} and yt−1 = {y1, . . . , yt−1}.
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Nature then reveals yt, and the predictor incurs a loss ℓ(ŷt, yt) for a
predefined loss function ℓ : [0, 1]2 → R+. We assume that the loss ℓ
is convex in its first argument and L-Lipschitz in both arguments; for
example, the absolute loss ℓ(ŷ, y) = |ŷ − y| satisfies these properties.

A prediction rule is a function Φ that takes inputs from (X×[0, 1])∗×
X and outputs a distribution over [0, 1]. For any prediction rule Φ and
function class H, we define the hybrid minimax regret 1 as:

r̃T (H,Φ) = sup
µ

Ex1 sup
y1∈[0,1]

Eŷ1 · · ·ExT sup
yT ∈[0,1]

EŷT[
T∑
t=1

ℓ(ŷt, yt)− inf
h∈H

T∑
t=1

ℓ(h(xt), yt)
]
, (9.1)

where xt ∼ µ and ŷt ∼ Φ(xt, yt−1) for all t ∈ [T ].
Let (x1, y1), . . . , (xm, ym) ∈ X × [0, 1], C ∈ R+, ϵn ∈ {−1,+1}n, and

x̃n ∈ X n. The mixed-ERM oracle is the task of solving the following
optimization problem:

inf
h∈H


m∑
i=1

ℓ(h(xi), yi) + C
n∑
j=1

ϵjh(x̃j)

 .
This problem can typically be solved efficiently using gradient-based
methods, even for complex function classes H (such as neural networks).

We say a predictor Φ is oracle-efficient if the running time of
computing ŷt ∼ Φ(xt, yt−1) is polynomial with respect to t by accessing
a mixe-ERM oracle (with each oracle call treated as unit time) for any
xt, yt−1. Our goal is to design an oracle-efficient prediction rule Φ that
minimizes the hybrid minimax regret r̃T (H,Φ) defined in (9.1).

9.2 Oracle-Efficient Hybrid Minimax Regrets

We first recall the following standard notion of Rademacher complexity:
Definition 9.1. Let H ⊂ [0, 1]X be a function class and T ∈ N+. The
Rademacher complexity of H at horizon T is defined to be

RadT (H) = sup
xT ∈X T

EϵT
[

sup
h∈H

T∑
t=1

ϵth(xt)
]
,

1This concept is always upper bounded by the expected worst-case regret in (7.1).
However, we conjecture that the two notions are, in fact, equivalent.
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where ϵt is i.i.d. sampled from the uniform distribution over {±1}.

The main result of this chapter is stated as follows:

Theorem 9.1. Let H ⊂ [0, 1]X be a class with RadT (H) ≤ O(T q) for
some q ∈ [1

2 , 1], and let ℓ be a L-Lipschitz loss that is convex in its first
argument. Then there exists an oracle-efficient prediction rule Φ with
at most O(L

√
T log T ) calls to the ERM oracle per round, such that

r̃T (H,Φ) ≤ O
(
L
√

log(LT ) · T
2−q

3−2q

)
.

In particular, for a binary-valued class with finite VC-dimension, we
have

r̃T (H,Φ) ≤ O(L
√

VC(H) log(LT ) · T
3
4 ),

and for a real-valued class H with an α-fat shattering dimension of
order α−p for p > 0 [71], we have

r̃T (H,Φ) ≤ Õ(LTmax{ 3
4 ,

p+1
p+2 }).

9.2.1 Efficient Predictor with Side-Information

To establish Theorem 9.1, we first consider a hypothetical scenario where
we assume the predictor has access to some side-information x0

−N+1
sampled i.i.d. from the same distribution µ. It is crucial to note that
this information is known to the adversarial as well, i.e., the adversary’s
strategy could also depend on x0

−N+1, which turns out to be the main
obstacle in our analysis.

Formally, we consider the following learning game proceeds over a
horizon of length M :

1. At the start of the game, Nature selects an unknown distribution
µ over X , samples an i.i.d. sample x0

−N+1 of size N from µ and
reveals x0

−N+1 to a predictor;

2. At each time step j ∈ [M ], Nature samples xj ∼ µ and selects
adversarially yj ∈ [0, 1] (depends on xj−N+1 and ŷt−1) but reveals
only xj ;
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3. The predictor then (randomly) generates ŷj ∈ [0, 1] based on
xj−N+1 and yj−1;

4. Nature reveals yj and the predictor incurs loss ℓ(ŷj , yj), for some
predefined convex and L-Lipschitz loss.

Predictor via surrogate relaxation. Let µ̂N be the empirical distri-
bution µ̂N = 1

N

∑N
i=1 δx−N+i based on x0

−N=1, where δx is the Dirac
measure on x. For any time step j ∈ [M ] and horizon M satisfying
M ≤ N/2, we construct the following randomized prediction rule:

1. Sample (internally) the dummy samples x̃j+1, · · · , x̃M from µ̂N
without replacement 2 and ϵj+1, · · · , ϵM i.i.d. from the uniform
distribution over {−1,+1};

2. Make prediction

ŷj = arg min
ŷ∈[0,1]

sup
y∈[0,1]

ℓ(ŷ, y) + sup
h∈H

2L
M∑

i=j+1
ϵih(x̃i)

−ℓ(h(xj), y)−
j−1∑
i=1

ℓ(h(xi), yi)

 .
(9.2)

Note that the dummy samples are generated from µ̂N instead of µ.
Crucially, our sampling is performed without replacement (not i.i.d.),
which is essential for our following analysis (Lemma 9.6). More generally,
one may also replace the estimation µ̂N with other estimation rules
instead of the empirical distribution we used here. This could provide
tighter bounds if the distribution µ is well-structured.

The following lemma shows that the predictor ŷj can be computed
efficiently by accessing to a mixed-ERM oracle.

Lemma 9.2. The predictor ŷj can be computed upto error ± 1
L

√
M

by
making at most O(L

√
M logM) mixed-ERM oracle calls. Moreover, for

2For technical reasons, we assume here that x̃M
j+1 is sampled from µ̂N without re-

placement. Equivalently, x̃M
j+1 is sampled uniformly from all (permuted) subseqeunces

of x0
−N+1 of length M − j.
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binary valued class H with y ∈ {0, 1} and absolute loss, we need only 2
(regular) ERM orcale calls to compute ŷj exactly.

Proof. Clearly, a naive approach for discretizing both ŷ and y with scale
1

L
√
M

yields an algorithm with L2M oracle calls. The O(L
√
M logM)

bound follows from [28, Thm 7] leveraging the convexity on ŷ. The
second part follows from the relation ϵh(x̃) = |h(x̃)− (1−ϵ)

2 | −
1−ϵ

2 for
ϵ ∈ {+1,−1} and the second assertion of [28, Thm 7].

Analysis of the regret. Denote by Φ the prediction rule derived from
(9.2). We consider the following analogous hybrid minimax regret with
the additional side-information:

r̃side
M,N (H,Φ) = sup

µ
Ex0

−N+1
Ex1 sup

y1
Eŷ1 · · ·ExM sup

yM

EŷM M∑
j=1

ℓ(ŷj , yj) − inf
h∈H

M∑
j=1

ℓ(h(xj), yj)

 , (9.3)

where the randomness of ŷjs is over the x̃’s and ϵ’s as in (9.2), while
xjs are sampled i.i.d. from µ.

To proceed, we first introduce the following key concept. Let now
(x1, y1), · · · , (xM , yM ) ∈ X × [0, 1] be any realization of the feature-label
pairs. We write Lhj = ∑j

i=1 ℓ(h(xi), yi) to simplify our discussion. The
surrogate relaxation is defined as 3

Rj = Ex̃,ϵ

sup
h∈H

2L
M∑

i=j+1
ϵih(x̃i)− Lhj

 , (9.4)

where x̃is and ϵis are generated the same way as in (9.2). We also define
the following variation that replaces the single x̃j+1 with a sample
x ∼ µ:

R̃j = Ex∼µEx̃,ϵ

sup
h∈H

2Lϵj+1h(x) + 2L
M∑

i=j+2
ϵih(x̃i)− Lhj

 . (9.5)

3Throughout the paper, we use the convention Ex̃,ϵ ≡ Ex̃M
j+1,ϵM

j+1
to simplify

notation.
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Note that the main technique for proving the relaxation based regret
bounds, such as [36], is through the concept of admissibility, which
essentially asserts that

Exj sup
yj

Eϵ,x̃ [ℓ(ŷj , yj) +Rj ] ≤ Rj−1.

However, a major technical step for establishing such an result is based
on the so-called randomness matching argument by leveraging the fact
that the dummy samples used to define the relaxation are the same as
the actual feature generating process. This, unfortunately, is not true in
our case since the empirical distribution µ̂N can deviate arbitrarily from
µ under total variation, regardless of how large the sample size N is.
We instead establish the following approx-admissibility of our surrogate
relaxation, with the proof deferred to Section 9.2.4.

Lemma 9.3 (Approx-Admissibility). Let ŷj be as in (9.2), then for all
j ∈ [M ] we have:

Exj sup
yj

Eϵ,x̃ [ℓ(ŷj , yj) +Rj ] ≤ R̃j−1. (9.6)

We are now ready to state our first main technical lemma of this
section, which follows from Lemma 9.3 by a "backward tracing" argu-
ment.

Lemma 9.4 (Regret Bound via Approx-Admissibility). Let Φ be the
predictor as in (9.2). Then for any class H ⊂ [0, 1]X with a convex and
L-Lipschitz loss ℓ, we have

r̃side
M,N (H,Φ) ≤ Ex0

−N+1

R̃0 +
M−1∑
j=1

Exj sup
yj

(R̃j −Rj)

 , (9.7)

where xM−N+1 are sampled i.i.d. from µ and Rj , R̃j are defined as in
(9.4) and (9.5).

Proof. Denote Qj ≡ Ex0
−N+1

Ex1 supy1 Eŷ1 · · ·Exj supyj
Eŷj for notation
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convenience. We have

r̃side
M,N (H,Φ)

(a)= QM

 M∑
j=1

ℓ(ŷj , yj) +RM


(b)= QM−1

M−1∑
j=1

ℓ(ŷj , yj) + ExM
sup
yM

EŷM
[ℓ(ŷM , yM ) +RM ]


(c)
≤ QM−1

M−1∑
j=1

ℓ(ŷj , yj) + R̃M−1


= QM−1

M−1∑
j=1

ℓ(ŷj , yj) +RM−1 + (R̃M−1 −RM−1)


(d)
≤ QM−1

M−1∑
j=1

ℓ(ŷj , yj) +RM−1

+ Ex0
−N+1

ExM−1 sup
yM−1

(R̃M−1 −RM−1)

(e)
≤ Ex0

−N+1
[R̃0] +

M−1∑
j=1

Ex0
−N+1

Exj sup
yj

(R̃j −Rj),

where (a) follows by definition of RM ; (b) follows by extracting the
last layer of QM ; (c) follows by Lemma 9.3 and noticing that ŷj has
the same randomness as Rj ; (d) follows by the the facts that sup(A+
B) ≤ supA + supB, supE ≤ E sup, the linearity of expectation and
R̃M−1 − RM−1 is independent of ŷj for all j ≤ M − 1; (e) follows by
repeating the same arguments for another M − 1 steps. This completes
the proof.

Remark 9.1. Note that the decomposition presented in Lemma 9.4 holds
whenever the approx-admissibility condition of Lemma 9.3 is satisfied.
We believe this could be applicable to a broader set of problems and is
of independent interest.

Bounding the relaxations. By Lemma 9.4, we know that the regret
r̃side
M,N (H,Φ) can be upper bounded by R̃0 and the discrepancies between
Rj and R̃j . Clearly, by the definition of R̃j , we have R̃0 ≤ 2LRadM (H),
where RadM (H) is the Rademacher complexity of H as in Definition 9.1.
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To bound the discrepancies, for any j ∈ [M − 1], xj , x̃Mj+2 ∈ X ∗, ϵMj+1 ∈
{±1}∗ and yj ∈ [0, 1]j , we define the following function:

fxj ,x̃M
j+2,ϵ

M
j+1,y

j (x) = sup
h∈H

2Lϵj+1h(x) + 2L
M∑

i=j+2
ϵih(x̃i)− Lhj

 .
(9.8)

The following fact is a consequence of our definitions.

Lemma 9.5. We have Rj = Ex̃,ϵ
[
fxj ,x̃M

j+2,ϵ
M
j+1,y

j (x̃j+1)
]

and R̃j =

Ex∼µEx̃,ϵ
[
fxj ,x̃M

j+2,ϵ
M
j+1,y

j (x)
]
.

Let zj = (xj , x̃Mj+2, ϵ
M
j+1). We now observe the following key prop-

erties of the functions fzj ,yj (x), which demonstrates that fzj ,yj (x) has
sensitivity upper bounded by 4L and is Lipschitz on yj .

Proposition 9.1. For any zj and yj , we have supx,x′ |fzj ,yj (x)−fzj ,yj (x′)| ≤
4L. Moreover, for all zj , x and yj , y′j ∈ [0, 1]j , we have |fzj ,yj (x) −
fzj ,y′j (x)| ≤ jL||yj − y′j ||∞.

Proof. Denote

F (h) = 2L
M∑

i=j+2
ϵih(x̃i)− Lhj .

Let ĥ = arg maxh∈H F (h) (find an approximation if necessary). We
claim that for any x ∈ X ,

F (ĥ)− 2L ≤ sup
h∈H
{2ϵj+1Lh(x) + F (h)} ≤ F (ĥ) + 2L.

This will complete the proof of the first part. To see the upper bound,
we have

sup
h∈H
{2ϵj+1Lh(x) + F (h)} ≤ sup

h
{2ϵj+1Lh(x)}+sup

h
F (h) ≤ 2L+F (ĥ),

since h(x) ∈ [0, 1]. For the lower bound, we have

sup
h∈H
{2ϵj+1Lh(x) + F (h)} ≥ 2ϵj+1Lĥ(x) + F (ĥ) ≥ F (ĥ)− 2L,

since sup do not increase by replacing h with any specific ĥ and ĥ(x) ∈
[0, 1].
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To prove the second part, for any given h ∈ H, we denote

gh(yj) = 2Lϵj+1h(x) + 2L
M∑

i=j+2
ϵih(x̃i)− Lhj .

Note that, yj only appears in the Lhj term. By definition of Lhj and
L-Lipschitz property of the loss ℓ, we have

∀h ∈ H, |gh(yj)− gh(y′j)| ≤ jL||yj − y′j ||∞.

Let ĥ = arg maxh gh(yj), we have

sup
h
gh(yj)− sup

h
gh(y′j) ≤ gĥ(yj)− gĥ(y′j) ≤ jL||yj − y′j ||∞.

Let ĥ′ = arg maxh gh(y′j), we have

sup
h
gh(yj)− sup

h
gh(y′j) ≥ gĥ′(yj)− gĥ′(y′j) ≥ −jL||yj − y′j ||∞.

The proposition follows by noticing that fzj ,yj (x) = suph gh(yj).

Note that Proposition 9.1 and Lemma 9.5 immediately imply that
R̃j −Rj ≤ 4L||µ− µ̂N ||TV

4. Unfortunately, we are unable to bound the
total variation distance ||µ− µ̂N ||TV due to the lack of any structure
we impose on µ. We instead establish the following key technical result,
which bounds the discrepancies via a Rademacher sum of the functions
fzj ,yj . This result constitutes the main technical ingredient in our next
analysis.

Lemma 9.6. For all j ∈ [M − 1], M ≤ N/2 and B = N −M + j + 1,
we find

Ex0
−N+1

Exj sup
yj

(R̃j −Rj) ≤

sup
x−N+B

−N+1 ,x′B ,zj

Eϵ′B
[
sup
yj

1
B

B∑
i=1

ϵ′i(fzj ,yj (x′
i)− fzj ,yj (x−N+i))

]
,

where x−N+B
−N+1 ,x′B, zj run over all possible values and ϵ′B is distributed

uniformly over {±1}B.
4Using the fact that Ex∼µ[f(x)]−Ex∼ν [f(x)] ≤ supx,x′ |f(x)−f(x′)| · ||µ−ν||TV.
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Sketch of Proof. We highlight only the main idea here and refer to Sec-
tion 9.2.5 for the complete proof. By Lemma 9.5, we can upper bound the
discrepancies by Ex0

−N+1
Ezj supyj [Ex∼µ[fzj ,yj (x)]−Ex̃j+1 [fzj ,yj (x̃j+1)]],

where zj = (xj , x̃Mj+2, ϵ
M
j+1). Note that x̃Mj+1 is sampled uniformly from

x0
−N+1 without replacement as in (9.2). Therefore, the randomness of

x̃Mj+1 can be described as follows: we first sample x̃Mj+2 from x0
−N+1

and then sample x̃j+1 uniformly from the remaining samples in x0
−N+1.

Now, the key observation is that, by symmetries of x0
−N+1 (which are

i.i.d.), we can fix x̃Mj+2 being the last M − j − 1 samples in x0
−N+1.

Therefore, we have Ex̃j+1 [fzj ,yj (x̃j+1)] = 1
B

∑B
i=1 fzj ,yj (x−N+i), where

B = N −M + j+ 1. Since zj is decoupled from x−N+B
−N+1 by our construc-

tion, we obtain the upper bound EzjEx−N+B
−N+1

supyj [Ex∼µ[fzj ,yj (x)] −
1
B

∑B
i=1 fzj ,yj (x−N+i)]. The lemma then follows by symmetrization with

Ex∼µ[fzj ,yj (x)] (see Section 9.2.5).

For any j ∈ [M−1] and zj as above, we define the following function
class 5:

Gzj = {gzj ,yj (x,x′) def= fzj ,yj (x′)− fzj ,yj (x) : yj ∈ [0, 1]j , (x,x′) ∈ X 2}.
(9.9)

Lemma 9.6 essentially states that the discrepancy between Rj and R̃j
is upper bounded by the Rademacher complexity of the class Gzj as
Ex0

−N+1
Exj supyj (R̃j −Rj) ≤ supzj

1
BRadB(Gzj ).

The following lemma provides a useful bound on such Rademacher
complexities.

Lemma 9.7. Let Gzj be as in (9.9), M ≤ N/2 and B = N −M + j + 1.
Then

sup
zj

1
B

RadB(Gzj ) ≤ O

√jL2 log(jLB)
B

 ≤ O
√2jL2 log(jLN/2)

N

 .
(9.10)

Proof. Let C ⊂ [0, 1]j be a covering of [0, 1]j with norm L∞ radius
1

jLB . We have |C| ≤ (jLB)j . By the second part of Proposition 9.1,

5Note that the "complexity" of Gzj arises from the yj ∈ [0, 1]j .
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we know that the class G′
zj

def= {gzj ,yj : yj ∈ C} forms a uniform L∞-
covering of Gzj with radius 2

B . Therefore, 1
BRadB(Gzj ) ≤ 1

BRadB(G′
zj

) +
2
B . The first inequality then follows by a simple application of Massart’s
lemma [11, Lemma 26.8] over G′

zj
, since |G′

zj
| ≤ |C| ≤ (jLB)j and

sup(x,x′)∈X 2{gzj ,yj (x,x′)} ≤ 4L for all gzj ,yj ∈ Gzj due to the first part
of Proposition 9.1. The second inequality is implied by that B ≥ N/2
and the fact that the function logB

B is monotone decreasing.

Putting everything together, we arrive at:

Theorem 9.8. Let Φ be the predictor as in (9.2) and M ≤ N/2. Then for
any class H ⊂ [0, 1]X with a convex and L-Lipschitz loss ℓ, the predictor
Φ can be computed efficiently with access to at most O(L

√
M logM)

mixed-ERM oracle calls per round such that

r̃side
M,N (H,Φ) ≤ 2LRadM (H) +

√
M +O

√M3L2 log(MLN)
N

 . (9.11)

Proof. The regret bound follows directly from Lemma 9.2, Lemma 9.4
and Lemma 9.6. We then invoke Lemma 9.7 to bound the discrepancies
by noticing that j ≤M .

Remark 9.2. Note that Theorem 9.8 shows that if N ≫ M2 logM
then the regret with side-information is reduced to the Rademacher
complexities of H, and thus matches the case when the distribution
is known in advance. However, in reality such side-information is not
available for the unknown distribution case, which can only be obtained
from prior samples.

9.2.2 Proof of Theorem 9.1 of the Orcale Efficient Predictor

We are now equipped with all the technical tools to prove Theorem 9.1,
with the only missing ingredient of constructing the side-information.
For this purpose, we employ an epoch-based approach, resembling those
used in Chapter 8.3.1, but in a completely different context. We parti-
tion the time horizon into epochs, with epoch n of length M(n). Let
S(n) = ∑n−1

i=1 M(i) be the total time steps after n− 1 epochs. We will
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use the features observed upto time S(n) as the side-information intro-
duces in Section 9.2.1 (denoted there as x0

N+1) and apply the predictor
constructed in (9.2) to make the prediction during the nth epoch.

Epoch 1 ... Epoch n
...

N := S(n) M(n)

To this end, our main technical part is to optimize the epoch length
M(n) that balances the trade-off in (9.11) and achieving the minimal
total regret. Let Φ be the predictor derived from (9.2), which we write
as Φ(x0

−N+1,xj , yj−1) for the side-information x0
−N+1, features xj and

labels yj−1 observed thus far. We define the following epoch predictor
Ψ: for any epoch n and time step j during such epoch, we set

Ψ(xS(n)+j , yS(n)+j−1) = Φ
(
xS(n),xS(n)+j

S(n)+1, y
S(n)+j−1
S(n)+1

)
. (9.12)

Let S−1(T ) be the largest number n such that S(n) < T . The following
lemma upper bounds the hybrid minimax regret of Ψ using the regrets
with side information (9.3) incurred by Φ. Note that this is not immedi-
ately obvious since we have reused the side-information among different
epochs.

Lemma 9.9. For any H and convex L-Lipschitz loss ℓ, we have

r̃T (H,Ψ) ≤
S−1(T )∑
n=1

r̃side
M(n),S(n)(H,Φ).

Proof. Define the operator Qj
i ≡ Exi supyi

Eŷi · · ·Exj supyj
Eŷj , where

ŷt ∼ Ψ(xt, yt−1) for all t ∈ [T ]. We have (truncate the last S(n + 1)
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above T if necessary):

r̃T (H,Ψ) = QT
1 sup
h∈H

S−1(T )∑
n=1

S(n+1)∑
j=S(n)+1

ℓ(ŷj , yj)− ℓ(h(xj), yj)


(a)
≤

S−1(T )∑
n=1

QT
1 sup
h∈H

 S(n+1)∑
j=S(n)+1

ℓ(ŷj , yj)− ℓ(h(xj), yj)


(b)=

S−1(T )∑
n=1

ExS(n)QS(n+1)
S(n)+1 sup

h∈H

 S(n+1)∑
j=S(n)+1

ℓ(ŷj , yj)− ℓ(h(xj), yj)


(c)=

S−1(T )∑
n=1

r̃side
M(n),S(n)(H,Φ),

where (a) follows by sup(A + B) ≤ supA + supB and linearity of
expectation; (b) follows since ŷj depends only on xj and yjS(n) for
j ∈ (S(n), S(n+ 1)]; (c) follows by definition.

Proof of Theorem 9.1. Assume RadT (H) ≤ O(T q) for some q ∈ [1
2 , 1].

By Theorem 9.8 and M(n), S(n) ≤ T we have

r̃side
M(n),S(n)(H,Φ) ≤ O

(
LM(n)q +

√
M(n)3L2 log(LT 2)

S(n)

)
.

Let M(n) = nα for some α > 0 to be determined later. We have S(n) =∑n−1
i=1 i

α = Θ(nα+1) by integration approximation, and S−1(T ) ≤
O(T 1/(α+1)). This implies that

r̃side
M(n),S(n)(H,Φ) ≤ O(Lnαq + L

√
log(LT 2)nα− 1

2 ).

By Lemma 9.9 and integration approximation again, we conclude

r̃T (H,Ψ) ≤ O
(
LT

αq+1
α+1 + L

√
log(LT 2)T

α+ 1
2

α+1

)
. (9.13)

Optimizing arg minα>0 max{αq+1
α+1 ,

α+ 1
2

α+1 }, we find (9.13) is minimized
when taking α = 1

2(1−q) . Plugging back to (9.13), we find r̃T (H,Ψ) ≤

O

(
L
√

log(LT )T
2−q

3−2q

)
. This completes the proof of the first part. The
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second and third parts follow by the facts that RadT (H) ≤ O(
√

VC(H)T )
for finite-VC class [44, Example 5.24], and RadT (H) ≤ Õ(Tmax{ 1

2 ,
p−1

p
})

for classes with α-fat shattering dimension of order α−p [28]. This
completes the proof and the big-O notations and M(n) ≤ S(n)/2 are
justified by noting that α ≥ 1 since q ≥ 1

2 .

9.2.3 Tighter Bounds for Special Classes

As demonstrated in Section 9.2.1, the main technical obstacle for ana-
lyzing the regret is to upper bound the discrepancies between R̃j and
Rj as in Lemma 9.4. It was shown in Lemma 9.6 that such discrepancies
can be upper bounded by the Rademacher complexity of the class Gzj

in (9.9). We demonstrate in this section how to leverage the structural
information of Gzj leading to tighter regret bounds for certain special
classes when compared to the general bounds from Theorem 9.1.

Binary valued classes. Let H ⊂ {0, 1}X be a binary valued class
and ℓ(ŷ, y) = |ŷ − y|. For any given zj (assume, w.l.o.g., ϵj+1 = 1)
and yj ∈ {0, 1}j , the function fzj ,yj can be expressed as fzj ,yj (x) =
suph{2h(x) + F (h)} (see definition in (9.8)), where F (h) is a discrete
valued function taking values in [−2M, 2M ]. Define

H0 =
{
h ∈ H : F (h) = sup

h′∈H
F (h′)

}

and

H1 =
{
h ∈ H : F (h) = sup

h′∈H
F (h′)− 1

}
.

Let h0(x) = suph∈H0{h(x)}, h1(x) = suph∈H1{h(x)} and ĥ = arg maxh∈H F (h).
The following structural characterization of fzj ,yj holds:

Lemma 9.10. For any x ∈ X , we have:

fzj ,yj (x) =


F (ĥ) + 2, if h0(x) = 1
F (ĥ) + 1, if h0(x) = 0 and h1(x) = 1
F (ĥ), else

. (9.14)
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Proof. Note that fzj ,yj (x) = suph{2h(x) + F (h)}. If h0(x) = 1, then
∃h ∈ H0 such that h(x) = 1 and F (h) = F (ĥ), thus fzj ,yj (x) ≥ 2+F (ĥ).
Clearly, we also have fzj ,yj (x) ≤ 2 suph h(x) + suph F (h) ≤ 2 + F (ĥ),
the first case follows. If h0(x) = 0 and h1(x) = 1, then there exists
h ∈ H1 such that h(x) = 1 and F (h) = F (ĥ) − 1, thus fzj ,yj (x) ≥
F (ĥ)−1+2 = F (ĥ)+1. On the other-hand, since h0(x) = 0, we have for
all h ∈ H0, 2h(x) + F (h) = F (ĥ). For any other h ̸∈ H0 ∪H1, we have
2h(x)+F (h) ≤ 2+F (ĥ)−2 = F (ĥ). Therefore, fzj ,yj (x) ≤ F (ĥ)+1, this
completes the second case. Finally, if both h0(x) = h1(x) = 0, we have
for any h ∈ H0, 2h(x) + F (h) = F (ĥ), i.e., fzj ,yj (x) ≥ F (ĥ). Moreover,
for any h ̸∈ H0, it is easy to verify that 2h(x) + F (h) ≤ F (ĥ).

Theorem 9.11. Let H ⊂ {0, 1}X , Fu = {fH′(x) = suph∈H′{h(x)} :
H′ ⊂ H}, F i = {fH′(x) = infh∈H′{h(x)} : H′ ⊂ H} be two classes of
functions and ℓ be the absolute loss. Then there exists an oracle-efficient
predictor Φ satisfying r̃T (H,Φ) ≤ O(

√
max{VC(Fu),VC(F i)}T ).

Proof. Assume, w.o.l.g., ϵj+1 = 1. The functions h0, h1 as in Fact 9.10
are within Fu. For any x2N ∈ X 2N and µ̂ uniform over x2N , there exists
a γ-cover Cγ of Fu under distance dµ̂(f1, f2) def= Prx∼µ̂[f1(x) ̸= f2(x)]
such that |Cγ | ≤ O( 1

γVC(Fu) ) [76]. By Fact 9.10, there exists a function
T : (Fu)2 → {0, 1, 2}X such that for any fzj ,yj , there exist h0, h1 ∈ Fu

such that fzj ,yj (x) = T (h0(x), h1(x)) + czj ,yj , where czj ,yj = F (ĥ) as in
Fact 9.10. Therefore, the function class C′ def= {T (h0, h1) : h0, h1 ∈ Cγ}
forms a 2γ-cover of {(fzj ,yj (x) − czj ,yj ) : yj ∈ [0, 1]j} under distance
dµ̂(f1, f2) and |C′| ≤ O( 1

γ2VC(Fu) ). This implies that the function class

C′′ def= {g(x′,x) = f(x′)− f(x) : f ∈ C′, (x′,x) ∈ X 2} forms a 4γ-cover
of

Gzj = {gzj ,yj (x′,x) = fzj ,yj (x′)− fzj ,yj (x) : yj ∈ [0, 1]j , (x′,x) ∈ X 2}

under distance dν̂(g1, g2) = Pr(x′,x)∼ν̂ [g1(x′,x) ̸= g2(x′,x)] for any
distribution ν̂ uniform over a fixed pairing of x2N and |C′′| ≤ O( 1

γ2VC(Fu) ).
We have by the chaining argument [44, Example 5.24] that RadN (Gzj ) ≤
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O(
√

VC(Fu)N). This implies by Lemma 9.4 & 9.6 that

r̃side
M,N (H,Φ) ≤ O

(√
VC(H)M + M

√
VC(Fu)√
N

)
. (9.15)

Taking M(n) = 1.5n in (9.12), we have N = S(n) = 2 · 1.5n − 3, which
ensures M(n) ≤ S(n)/2+O(1) (as required for (9.15) to hold). Invoking
Lemma 9.9, we conclude

r̃T (H,Ψ) ≤ O(
√

VC(H)+
√

VC(Fu))
⌈log1.5(T )⌉∑

n=1
1.5n/2 ≤ O(

√
VC(Fu)T ),

where the last inequality follows by H ⊂ Fu. This completes the proof
and the case for ϵj+1 = −1 is symmetric with F i.

Note that for the threshold functions H = {1{x ≥ a} : a, x ∈ [0, 1]}
we have Fu = F i = H. Theorem 9.11 implies an oracle efficient O(

√
T )

regret, which matches the information-theoretical lower bound and is
tighter than the covering-based O(

√
T log T ) bound implied by [69].

Another example is the class of indicators of intervals with bounded
length {1{x ∈ [a, b]} : b − a ≥ γ, [a, b] ⊂ [0, 1]}, for which we have
VC(F i) = 2 and VC(Fu) ≤ O( 1

γ ).

Lipschitz functions. Let X = [0, 1]d and H ⊂ [0, 1]X be the class of
all 1-Lipschitz functions under L∞ norm. Assume ℓ(ŷ, y) = |ŷ − y| is
the absolute loss. Let µ and µ̂N be the true and empirical distribu-
tions, respectively, as in Section 9.2.1. By Lemma 9.5 and assuming
that x̃Mj+1 is sampled i.i.d. from µ̂N , we have Exj

−N+1
supyj (R̃j −Rj) ≤

Ex0
−N+1

supyj ,zj
(Ex∼µ[fzj ,yj (x)]− Ex∼µ̂N

[fzj ,yj (x)]). By the same argu-
ment as Proposition 9.1 (second part) and Lipschitz property of h ∈ H,
we have:

Fact 1. For all zj , yj and x,x′, |fzj ,yj (x)− fzj ,yj (x′)| ≤ 2||x− x′||∞.

Theorem 9.12. Let H and ℓ be as above. Then, there exists an oracle-
efficient predictor Φ such that r̃T (H,Φ) ≤ Õ(Tmax{ 1

2 ,
d−1

d
}), and this

bound is tight upto poly-logarithmic factors.
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Proof. By Fact 1, we know that for all zj , yj the function fzj ,yj (x)
is 2-Lipschitz. Therefore, by Kantorovich-Rubinstein duality [80] we
have supyj ,zj

(Ex∼µ[fzj ,yj (x)]− Ex∼µ̂N
[fzj ,yj (x)]) ≤ 2W1(µ, µ̂N ), where

W1(µ, µ̂N ) = infγ∈Γ(µ,µ̂N ) E(x,x′)∼γ [||x − x′||∞] is the Wasserstein 1-
distance with Γ(µ, µ̂N ) being the class of all coupling between µ, µ̂N .
Therefore, we have Exj

−N+1
supyj (R̃j −Rj) ≤ 2Ex0

−N+1
[W1(µ, µ̂N )], i.e.,

the discrepancy is upper bounded by the convergence rate of em-
pirical distribution under Wasserstein 1-distance. Invoking [81, Thm
1] and boundedness of X , we have Ex0

−N+1
[W1(µ, µ̂N )] ≤ Õ(N−1/d).

Let Φ be the predictor in (9.2). By Lemma 9.4 and RadM (H) ≤
Õ(Mmax{ 1

2 ,
d−1

d
}) [44], we have

r̃side
M,N (H) ≤ Õ(Mmax{ 1

2 ,
d−1

d
} +MN−1/d).

The result then follows by Lemma 9.9 with M(n) = 2n (which ensures
N = S(n) = M(n) − 1). The last part follows by that the ϵ-metric
entropy of H is Θ( 1

ϵd
) [44].

Remark 9.3. Note that, if we assume certain structure on µ that admits
a computationally efficient estimator µ̂N that satisfies ||µ− µ̂N ||TV ≤
O( 1√

N
) (such as for Gaussian distributions [82]), then the (optimal)

O(RadT (H) +
√
T ) bound is achievable for any class H ⊂ [0, 1]X .

9.2.4 Proof of Lemma 9.3

In this section, we establish the approx-admissibility of our predictor in
(9.2). The reasoning follows closely to the arguments as in [36, Lemma
11&12] but needs careful adaption for handling the dummy samples x̃s
generated from µ̂N . We have

Exj
sup
yj

Eϵ,x̃ [ℓ(ŷj , yj) +Rj ]

= Exj
sup
yj

Eϵ,x̃

ℓ(ŷj , yj) + sup
h∈H

2L
M∑

i=j+1
ϵih(x̃i)− Lh

j


(a)
≤ Eϵ,x̃Exj

sup
yj

ℓ(ŷj , yj) + sup
h∈H

2L
M∑

i=j+1
ϵih(x̃i)− ℓ(h(xj), yj)− Lh

j−1


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(b)
≤ Eϵ,x̃Exj

inf
ŷ

sup
yj

ℓ(ŷ, yj) + sup
h∈H

2L
M∑

i=j+1
ϵih(x̃i)− ℓ(h(xj), yj)− Lh

j−1


= Eϵ,x̃Exj

inf
ŷ

sup
yj

sup
h∈H

2L
M∑

i=j+1
ϵih(x̃i)− Lh

j−1 + ℓ(ŷ, yj)− ℓ(h(xj), yj)


(c)
≤ Eϵ,x̃Exj

inf
ŷ

sup
yj

sup
h∈H

2L
M∑

i=j+1
ϵih(x̃i)− Lh

j−1 + ∂ℓ(ŷ, yj)(ŷ − h(xj))


(d)
≤ Eϵ,x̃Exj

inf
ŷ

sup
yj

sup
gj∈[−L,L]

sup
h∈H

2L
M∑

i=j+1
ϵih(x̃i)− Lh

j−1 + gj(ŷ − h(xj))


(e)
≤ Eϵ,x̃Exj

inf
ŷ

sup
gj∈{−L,L}

sup
h∈H

2L
M∑

i=j+1
ϵih(x̃i)− Lh

j−1 + gj(ŷ − h(xj))


where (a) follows by the definition of Rj and that ŷj has the same
randomness as Rj (i.e, the x̃s and ϵs); (b) is due to definition of ŷj ; (c) is
due to convexity of ℓ; (d) is due to L-Lipschitz property of ℓ; (e) follows
by that the inner function is convex w.r.t. gj and thus the supgj∈[−L,L]
is attained on the boundary {−L,L}. We have

Eϵ,x̃Exj

[
inf

ŷ
sup

gj ∈{−L,L}
sup
h∈H

2L
M∑

i=j+1

ϵih(x̃i) − Lh
j−1 + gj(ŷ − h(xj))

]
(a)= Eϵ,x̃Exj

[
inf

ŷ
sup

dj ∈∆({−L,L})
Egj ∼dj

[
sup
h∈H

2L
M∑

i=j+1

ϵih(x̃i) − Lh
j−1 + gj(ŷ − h(xj))

]]
(b)= Eϵ,x̃Exj

[
sup

dj ∈∆({−L,L})
inf

ŷ
Egj ∼dj

[
sup
h∈H

2L
M∑

i=j+1

ϵih(x̃i) − Lh
j−1 + gj(ŷ − h(xj))

]]
(c)= Eϵ,x̃Exj

[
sup
dj

inf
ŷ

Egj ∼dj

[
gj ŷ + sup

h∈H
2L

M∑
i=j+1

ϵih(x̃i) − Lh
j−1 − gjh(xj)

]]

= Eϵ,x̃Exj

[
sup
dj

inf
ŷ

(
Egj ∼dj [gj ŷ] + Egj ∼dj

[
sup
h∈H

2L
M∑

i=j+1

ϵih(x̃i) − Lh
j−1 − gjh(xj)

])]
(d)= Eϵ,x̃Exj

[
sup
dj

(
inf

ŷ
Eg′

j
∼dj

[g′
j ŷ]
)

+ Egj ∼dj

[
sup
h∈H

2L
M∑

i=j+1

ϵih(x̃i) − Lh
j−1 − gjh(xj)

]]

= Eϵ,x̃Exj

[
sup
dj

Egj ∼dj

[
inf

ŷ
Eg′

j
∼dj

[g′
j ŷ] + sup

h∈H
2L

M∑
i=j+1

ϵih(x̃i) − Lh
j−1 − gjh(xj)

]]
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= Eϵ,x̃Exj

[
sup
dj

Egj ∼dj

[
sup
h∈H

2L
M∑

i=j+1

ϵih(x̃i) − Lh
j−1 + inf

ŷ
Eg′

j
∼dj

[g′
j ŷ] − gjh(xj)

]]
(e)
≤ Eϵ,x̃Exj

[
sup
dj

Egj ∼dj

[
sup
h∈H

2L
M∑

i=j+1

ϵih(x̃i) − Lh
j−1 + Eg′

j
∼dj

[g′
jh(xj)] − gjh(xj)

]]
(f)
≤ Eϵ,x̃Exj

[
sup
dj

Egj ,g′
j

∼dj

[
sup
h∈H

2L
M∑

i=j+1

ϵih(x̃i) − Lh
j−1 + (g′

j − gj)h(xj)

]]
(g)= Eϵ,x̃Exj

[
sup
dj

Egj ,g′
j

∼dj
Eϵj

[
sup
h∈H

2L
M∑

i=j+1

ϵih(x̃i) − Lh
j−1 + ϵj(g′

j − gj)h(xj)

]]
(h)
≤ Eϵ,x̃Exj

[
sup
dj

Egj ∼djEϵj

[
sup
h∈H

2L
M∑

i=j+1

ϵih(x̃i) − Lh
j−1 + 2ϵjgjh(xj)

]]
(i)= Eϵ,x̃Exj

[
Eϵj

[
sup
h∈H

2L
M∑

i=j+1

ϵih(x̃i) − Lh
j−1 + 2ϵjLh(xj)

]]
= R̃j−1,

where (a) follows by supgj∈{−L,L} ≡ supdj∈∆({−L,L}) Egj∼dj
where ∆({−L,L})

is the set of all probability distributions over {−L,L}; (b) follows by
the minimax theorem and noticing that the inner expectation is bi-
linear w.r.t. ŷ and dj ; (c) follows by the fact that gj ŷ is independent
of suph; (d) follows by that the suph term is independent of ŷ and
introducing an i.i.d. copy g′

j of gj ; (e) follows by the fact that re-
placing ŷ with h(xj) does not decrease the inf term; (f) is due to
supE ≤ E sup; (g) is due to symmetries of gj , g′

j and ϵj is uniform over
{−1, 1}; (h) follows by sup(A+B+C) ≤ sup(A/2+B)+sup(A/2+C) =
(sup(A+ 2B) + sup(A+ 2C))/2, the linearity of expectation and sym-
metries of B,C; (i) follows by that the inner expectation takes the
same value for all gj ∈ {−L,L} and therefore the supdj

Egj∼dj
can be

eliminated. This completes the proof.

9.2.5 Proof of Lemma 9.6

We have

Ex0
−N+1

Exj sup
yj

(R̃j −Rj)
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(a)= Ex0
−N+1

Exj sup
yj

Ex̃M
j+1,ϵ

M
j+1

Ex∼µ[fzj ,yj (x)− fzj ,yj (x̃j+1)]

≤ Ex0
−N+1

ExjEx̃M
j+2,ϵ

M
j+1

sup
yj

Ex̃j+1,x[fzj ,yj (x)− fzj ,yj (x̃j+1)]

(b)= Ex0
−N+1

Ezj sup
yj

Ex̃j+1,x[fzj ,yj (x)− fzj ,yj (x̃j+1)]

= Ex0
−N+1

Ezj sup
yj

[Ex∼µ[fzj ,yj (x)]− Ex̃j+1 [fzj ,yj (x̃j+1)]]

(c)= EzjEx−N+B
−N+1

sup
yj

[
Ex∼µ[fzj ,yj (x)]− 1

B

B∑
i=1

fzj ,yj (x−N+i)
]

(d)= EzjEx−N+B
−N+1

sup
yj

[
1
B

B∑
i=1

Ex′
i∼µ[fzj ,yj (x′

i)]− fzj ,yj (x−N+i)
]

= EzjEx−N+B
−N+1

sup
yj

Ex′B∼µ⊗B

[
1
B

B∑
i=1

fzj ,yj (x′
i)− fzj ,yj (x−N+i)

]

≤ EzjEx−N+B
−N+1

Ex′B sup
yj

[
1
B

B∑
i=1

fzj ,yj (x′
i)− fzj ,yj (x−N+i)

]
(e)= EzjEx−N+B

−N+1
Ex′BEϵ′B sup

yj

[
1
B

B∑
i=1

ϵ′j(fzj ,yj (x′
i)− fzj ,yj (x−N+i))

]

≤ sup
x−N+B

−N+1 ,x′B ,zj

Eϵ′B sup
yj

[
1
B

B∑
i=1

ϵ′j(fzj ,yj (x′
i)− fzj ,yj (x−N+i))

]

where (a) follows by Lemma 9.5 (in Section 9.2.1); (b) follows by defini-
tion of zj ; (c) follows by Lemma 9.13 below and taking B = N−M+j+1;
(d) follows by introducing B fresh i.i.d. samples x′B ∼ µ⊗B; (e) follows
by symmetries of x′B and x−N+B

−N+1 (which are independent of zj) and
introducing the i.i.d. random variables ϵ′B uniform over {−1, 1}B;

Lemma 9.13. Let B = N −M + j + 1, then

Ex0
−N+1

Ezj sup
yj

[Ex∼µ[fzj ,yj (x)]− Ex̃j+1 [fzj ,yj (x̃j+1)]]

= EzjEx−N+B
−N+1

sup
yj

[
Ex∼µ[fzj ,yj (x)]− 1

B

B∑
i=1

fzj ,yj (x−N+i)
]
.
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Proof. Note that zj = (xj , x̃Mj+2, ϵ
M
j+1), where x̃Mj+1 are sampled uni-

formly from x0
−N+1 without replacement, and xj , ϵMj+1 are independent

of x0
−N+1. Therefore, we have

Ex0
−N+1

Ezj sup
yj

[Ex∼µ[fzj ,yj (x)]− Ex̃j+1 [fzj ,yj (x̃j+1)]]

= Exj ,ϵMj+1
Ex0

−N+1
Ex̃M

j+2
sup
yj

[Ex∼µ[fzj ,yj (x)]− Ex̃j+1 [fzj ,yj (x̃j+1)]]

(⋆)= Exj ,ϵMj+1
Ex0

−N+1
EI sup

yj

Ex∼µ[fzj ,yj (x)]− 1
B

∑
i∈[N ]\I

fzj ,yj (x−N+i)


where the key step (⋆) follows by noticing that the randomness of x̃Mj+2
is equivalent to selecting a random index set I ⊂ [N ] uniformly with
size |I| = M − j − 1 and the index of x̃j+1 (in x0

−N+1) is then uniform
over [N ]\I 6, where the size of [N ]\I is B = N −M + j + 1; Therefore,

Ex̃j+1 [fzj ,yj (x̃j+1)] = 1
B

∑
i∈[N ]\I

fzj ,yj (x−N+i).

Note that x0
−N+1 is an i.i.d. sample, by symmetries, we can fix

I = {B + 1, · · · , N} (i.e., we take x̃Mj+2 being x0
−N+B+1) and therefore

x̃Mj+2 can be decoupled from x−N+B
−N+1 , leading to

Exj ,ϵMj+1
Ex0

−N+1
EI sup

yj

Ex∼µ[fzj ,yj (x)]− 1
B

∑
i∈[N ]\I

fzj ,yj (x−N+i)


= Exj ,ϵMj+1

Ex̃M
j+2

Ex−N+B
−N+1

sup
yj

[
Ex∼µ[fzj ,yj (x)]− 1

B

B∑
i=1

fzj ,yj (x−N+i)
]

= EzjEx−N+B
−N+1

sup
yj

[
Ex∼µ[fzj ,yj (x)]− 1

B

B∑
i=1

fzj ,yj (x−N+i)
]
.

This completes the proof of this lemma.

9.3 Oblivious Adversaries

Finally, we provide the regret analysis for online learning against an
oblivious adversary. Note that, up to this point, we have assumed that

6By the definition of sampling without replacement.
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the generation of yt’s is adaptive, meaning that the selection of yt at
each time step depends on all prior information: xt, yt−1, and ŷt−1. For
comparison, we now introduce a weaker notion of an adversary—namely,
the oblivious adversary—which selects the yt’s based only on the current
instance xt. Interestingly, in the case of obliviously chosen labels, the
hybrid minimax regret can be substantially improved.

We follow the same online learning game as in (9.1) with the excep-
tion that the adversary fixes functions f1, · · · , fT : X → [0, 1] before
the game and sets the adversary labels yt = ft(xt) for each time step
t ∈ [T ]. Formally, for any expert class H and prediction rule Φ, we are
interested in the following oblivious minimax regret:

r̃ob
T (H,Φ)

= sup
f1,··· ,fT ∈[0,1]X

sup
µ

ExT EŷT

[
T∑

t=1
ℓ(ŷt, ft(xt))− inf

h∈H

T∑
t=1

ℓ(h(xt), ft(xt))
]
,

where xT are sampled i.i.d. from µ and ŷt ∼ Φ(xt, yt−1) for t ∈ [T ].
For the clarity of presentation, we assume that ℓ(ŷ, y) = |ŷ − y| is the
absolute loss.

We now ready to state the main result of this section:
Theorem 9.14. Let H ⊂ [0, 1]X be a class of Rademacher complexity
RadT (H) = O(T q) for some q ∈ [1

2 , 1] and ℓ be the absolute loss.
Then there exists an oracle-efficient prediction rule Φ with at most
O(
√
T log T ) calls to the ERM oracle per round, such that

r̃ob
T (H,Φ) ≤ O(T q).

In particular, for finite-VC class H, we have r̃ob
T (H,Φ) ≤ O(

√
VC(H)T ).

For a class H with α-fat shattering dimension O(α−p) for some p > 0,
we have r̃ob

T (H,Φ) ≤ Õ(Tmax{ 1
2 ,

p−1
p

}).
Proof. We will follow the same path as the regret analysis for the non-
oblivious adversaries as established in Section 9.2. We first consider the
scenario with side-information x0

−N+1, and define for any predictor Φ
the following oblivious minimax regret with side-information:

r̃ob,side
M,N (H,Φ) = sup

f1,··· ,fM ∈[0,1]X
sup
µ

ExM
−N+1

EŷM

 M∑
j=1

ℓ(ŷj , fj(xj))
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− inf
h∈H

M∑
j=1

ℓ(h(xj), fj(xj))

 ,
where xM−N+1 are sampled i.i.d. (9.2) and Rj and R̃j be the same
surrogate relaxations as in (9.4) and (9.5). We claim that:

r̃ob,side
M,N (H,Φ) ≤ sup

fM

sup
µ

Ex0
−N+1

R̃0 +
M−1∑
j=1

Exj [R̃j −Rj ]

 . (9.16)

To see this, we find

r̃ob,side
M,N (H,Φ) = sup

fM

sup
µ

ExM
−N+1

EŷM

 M∑
j=1

ℓ(ŷj , fj(xj))− inf
h∈H

M∑
j=1

ℓ(h(xj), fj(xj))


= sup

fM

sup
µ

ExM
−N+1

EŷM

 M∑
j=1

ℓ(ŷj , fj(xj)) +RM


= sup

fM

sup
µ

ExM−1
−N+1

EŷM−1

M−1∑
j=1

ℓ(ŷj , fj(xj)) + ExM
EŷM

[ℓ(ŷM , fM (xM )) +RM ]


(a)
≤ sup

fM

sup
µ

ExM−1
−N+1

EŷM−1

M−1∑
j=1

ℓ(ŷj , fj(xj)) + ExM
sup
yM

EŷM
[ℓ(ŷM , yM ) +RM ]


(b)
≤ sup

fM

sup
µ

ExM−1
−N+1

EŷM−1

M−1∑
j=1

ℓ(ŷj , fj(xj)) + R̃M−1


= sup

fM

sup
µ

ExM−1
−N+1

EŷM−1

M−1∑
j=1

ℓ(ŷj , fj(xj)) +RM−1 + R̃M−1 −RM−1


= sup

fM

sup
µ

ExM−1
−N+1

EŷM−1

M−1∑
j=1

ℓ(ŷj , fj(xj)) +RM−1

+ ExM−1
−N+1

(R̃M−1 −RM−1)


(c)
≤ sup

fM

sup
µ

Ex0
−N+1

R̃0 +
M−1∑
j=1

Exj [R̃j −Rj ]


where (a) follows by that replacing fM (xM ) with supyM

do not decrease
the value; (b) follows by Lemma 9.3; (c) follows by repeating the same
argument for another M − 1 steps.
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Now, the key observation is that Exj
−N+1

[R̃j − Rj ] = 0 for all j ∈
[M − 1] whenever N ≥ M − 1. This follows by the same argument
as in the proof of Lemma 9.6 by noticing that the supyj is outside
the expectation Eϵ′B for oblivious adversaries. Moreover, this argument
holds for all B = N −M + j + 1 ≥ 1, i.e., N ≥ M − j (since by our
assumption N ≥M − 1 and j ≥ 1). Therefore, we have

r̃ob,side
M,N (H,Φ) ≤ Ex0

−N+1
[R̃0] ≤ RadM (H) ≤ O(M q),

whenever N ≥M − 1. By the epoch approach as in Section 9.2.2 and
taking the epoch length M(n) = 2n (which ensures S(n) ≥M(n)− 1)
we conclude

r̃ob
T (H,Ψ) ≤

⌈log T ⌉∑
n=1

2nq ≤ O(T q),

where Ψ is the epoch predictor derived from Φ as (9.12). The theorem
now follows by Lemma 9.2 and noticing that the computational error
only contributes O(

√
T ) to the regret.

Remark 9.4. Theorem 9.14 demonstrates that the oblivious minimax
regret with unknown i.i.d. feature generation process is equivalent
to the regret achievable with known feature generation distribution
and non-oblivious adversaries [28, Thm 7], which also matches the
information-theoretical lower bound (upto poly-logarithmic factors).

9.4 Bibliographical Notes

The relaxation-based approach was first introduced by [36], providing a
generic method for constructing sequential prediction algorithms (albeit
potentially inefficient) for a wide range of online learning scenarios.
Rakhlin et al. [36] demonstrated that an oracle-efficient online learning
algorithm is feasible via the so-called random play-out approach, pro-
vided one can access a sampling oracle for future features. This includes
applications such as transductive online learning [83], [84] and settings
with known i.i.d. feature generation distributions [85]–[87]. A more so-
phisticated scenario—the smooth adversarial setting—was investigated
by [25], [27], [28], [88]. In this setting, the future sampling distribution



9.4. Bibliographical Notes 179

is not directly accessible but can be stochastically controlled via a cou-
pling argument introduced by [27]. However, this approach still requires
access to a sampling oracle for the underlying reference measure.

The results on oracle-efficient algorithm with unknown feature dis-
tributions presented in this chapter are based on the work of [89].



10
Online Learning with Noisy Labels

This chapter studies online learning from noisy labels, where examples
arrive sequentially with adversarially chosen features and stochastically
corrupted labels. Unlike the agnostic online settings considered in earlier
chapters—where regret is evaluated on observable labels and both
features and labels may be adversarial—our focus here differs in two key
respects: (i) we assume that the noisy labels are generated by a semi-
stochastic mechanism rather than being chosen purely adversarially;
and (ii) our predictions are evaluated against the (unobservable) true
labels rather than the noisy observations.

It is instructive to start with the following example from [35]:

Example 10.1. Let H ⊂ {0, 1}X be a finite hypothesis class. Consider
the following online learning game between Nature/Adversary and
Learner over a time horizon T . Nature fixes a ground truth h ∈ H to start
the game. At each time step t, Nature adversarially selects feature xt ∈
X and reveals it to the learner. Learner makes a prediction ŷt based on
prior features xt = {x1, · · · ,xt} and noisy labels ỹt−1 = {ỹ1, · · · , ỹt−1}.
Nature then selects an (unknown) noise parameter ηt ∈ [0, η] for some

180
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given η (known to learner), and generates 1

ỹt = Bernoulli(ηt)⊕ yt,

where ⊕ denotes binary addition and yt = h(xt) is the true label. It
was demonstrated by Ben-David et al. [35, Thm 15] that there exist
predictors ŷT such that

sup
h∈H,xT ∈X T

E
[
T∑
t=1

1{ŷt ̸= h(xt)}
]
≤ log |H|

1− 2
√
η(1− η)

. (10.1)

Note that the risk bound in (10.1) is surprising: although the cumu-
lative noise grows linearly ηT , the risk remains independent of the time
horizon T , even when evaluated on the unseen true labels. Despite its
foundational nature, understanding this phenomenon beyond simple
Massart’s noise remains largely unexplored in the literature.

We present in this chapter a theoretical framework that system-
atically addresses this gap, offering a more principled approach to
understanding the intrinsic complexity of the problem that determines
the risk under various noise mechanisms.

10.1 Problem Formulation and Preliminaries

Let X be a set of features (or instances), Y be a set of labels, and Ỹ be
a set of noisy observations. We assume throughout this chapter that
|Y| = N and |Ỹ| = M for some integers N,M ≥ 2. We denote

D(Ỹ) =
{
p = (p[1], . . . , p[M ]) ∈ [0, 1]M :

M∑
m=1

p[m] = 1
}

as the set of all probability distributions over Ỹ.
A noise kernel is defined as a map

K : X × Y → 2D(Ỹ),

where 2D(Ỹ) is the set of all subsets of D(Ỹ), i.e., the kernel K maps
each (x, y) ∈ X × Y to a subset of distributions K(x, y) ⊂ D(Ỹ).

1This is typically referred to as Massart’s noise.
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Note that the noise kernel provides a compact way of modeling the
noisy label distribution directly without explicitly referring to the noise.
This is more convenient for our discussion, as ultimately the statistical
information is solely determined by the noisy label distributions.

Let H ⊂ YX be a class of hypotheses and K be a noise kernel as
defined above. Denote Qx

y := K(x, y) for notational convenience. We
consider the following robust online classification protocol:

Protocol 10.1 Adversarial Online Learning with Noisy Labels
1: Initialization: Nature fixes a ground truth h ∈ H
2: for t = 1 to T do
3: Nature selects instance xt ∈ X adversarially
4: Learner predicts ŷt ∈ Y based on history (xt, ỹt−1)
5: Adversary selects p̃t ∈ Qxt

h(xt) and samples noisy label ỹt ∼ p̃t
6: end for

The goal of learner is to minimize the cumulative risk
T∑
t=1

1{h(xt) ̸= ŷt}.

Note that the cumulative error is a random variable that depends
on all the randomness associated with the game. To remove the depen-
dency on such randomness and to assess the fundamental limits of the
prediction quality, we consider the following two measures 2:

Definition 10.1. Let H ⊂ YX be a set of hypotheses and K : X × Y →
2D(Ỹ) be a noise kernel. We denote by Φ the (possibly randomized)
strategies of the learner. The expected minimax risk is defined as:

r̃T (H,K) = inf
Φ

sup
h∈H

QT
KEŷT

[
T∑
t=1

1{h(xt) ̸= ŷt}
]
, (10.2)

2We assume here the selection of p̃T and xT are oblivious to the learner’s
action for simplicity. This is equivalent to the adaptive case if the learner’s internal
randomness are independent among different time steps by a standard argument
from Cesa-Bianchi et al. [9, Lemma 4.1].
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where ŷt ∼ Φ(xt, ỹt−1) and QT
K denotes for operator

QT
K ≡ sup

x1∈X
sup

p̃1∈Qx1
h(x1)

Eỹ1∼p̃1 · · · sup
xT ∈X

sup
p̃T ∈QxT

h(xT )

EỹT ∼p̃T .

By skolemization (Lemma 2.2), we have operator identity:

QT
K ≡ sup

ψT

sup
p̃T

EỹT ∼p̃T ,

where ψT = {ψ1, · · · , ψT } runs over all functions ψt : Ỹt−1 → X for
t ∈ [T ] and p̃T runs over all (joint) distributions over ỸT subject to the
constraints that for any t ∈ [T ] and ỹt−1 the conditional marginal p̃t
of p̃T at ỹt conditioning on ỹt−1 satisfies p̃t ∈ Qxt

h(xt) for xt = ψt(ỹt−1).
This leads to our next definition of the high probability minimax risk:

Definition 10.2. Let H, K and Φ be as in Definition 10.1. For any confi-
dence parameter δ > 0, the high probability minimax risk at confidence
δ is defined as the minimum number Bδ(H,K) ≥ 0 such that there
exists a predictor Φ satisfying:

sup
h∈H,ψT ,p̃T

Pr
[
T∑
t=1

1{h(xt) ̸= ŷt} ≥ Bδ(H,K)
]
≤ δ, (10.3)

where the selection of ψT and p̃T are as in the discussion above with
xt = ψt(ỹt−1) and the probability is over both ỹT ∼ p̃T and ŷT for
ŷt ∼ Φ(xt, ỹt−1).

Note that the kernel map K is generally known to the learner when
constructing the predictor Φ. However, the induced kernel sets Qxt

h(xt)
are not, since they depend on the unknown ground truth classifier
h and adversarially generated features xT . In certain cases, such as
Theorem 10.4, the kernel map K is also not required to be known.

We assume, w.l.o.g., that Qx
y s are convex and closed sets for all

(x, y), since the adversary can select an arbitrary distribution from Qx
y s

at each time t, including randomized strategies that effectively sample
from a mixture (i.e., convex combination) of distributions in Qx

y s.
Clearly, one must introduce some constraints on the kernel K in

order to obtain meaningful results. To do so, we introduce the following
well-separateness condition:
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Definition 10.3 (Well-Separated Kernel). Let L : D(Ỹ)×D(Ỹ)→ R≥0

be a divergence, we say a kernel K is well-separated w.r.t. L at scale
γ > 0, if ∀x ∈ X , ∀y, y′ ∈ Y with y ̸= y′,

L(Qx
y ,Qx

y′) def= inf
p∈Qx

y ,q∈Qx
y′
L(p, q) ≥ γ.

Example 10.2. Let Y and Ỹ be the label and noisy observation sets.
We can specify for any y ∈ Y a canonical distribution py ∈ D(Ỹ). A
natural kernel would be to define:

Qx
y = {p ∈ D(Ỹ) : ||p− py||TV ≤ ϵ}.

In this case, the kernel is well-separated with the gap γ under total
variation if:

inf
y ̸=y′∈Y

||py − py′ ||TV ≥ γ + 2ϵ.

10.2 The Binary Label Case

We initiate our discussion with a simple case, where we assume the label
space Y = {0, 1} is binary-valued. This will provide us with an intuitive
understanding of how the stochastic nature of noisy labels impacts the
risk bounds. We state our first main result:

Theorem 10.1. Let H ⊂ {0, 1}X be any finite binary valued class, K be
any noise kernel that is well-separated at scale γL w.r.t. L2 divergence.
Then, the expected minimax risk, defined in Definition 10.1, is upper
bounded by:

r̃T (H,K) ≤ 16 log |H|
γL

.

10.2.1 Proof of Theorem 10.1

We begin with the following simple geometry fact that is crucial for our
proof.

Lemma 10.2. Let Q ⊂ D(Ỹ) be a convex and closed set, p be a
point outside of Q with γ

def= infq∈Q L
2(p, q). Denote by q∗ ∈ Q the

(unique) point that attains L2(p, q∗) = γ. Then for any q ∈ Q, we have
L2(q, p)− L2(q, q∗) ≥ L2(p, q∗) = γ.
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Proof. By the hyperplane separation theorem, the hyperplane perpen-
dicular to line segment p− q∗ at q∗ separates Q and p. Therefore, the
degree θ of angle formed by p− q∗ − q is greater than π/2. By the law
of cosines, L2(q, p) ≥ L2(q, q∗) + L2(q∗, p) = L2(q, q∗) + γ.

Our key idea of proving Theorem 10.1 is to reduce the robust
(noisy) online classification problem to a suitable conditional distribution
estimation problem, as discussed next.

Online conditional distribution estimation. Let F ⊂ D(Ỹ)X be a class
of functions mapping X to distributions in D(Ỹ). Online Conditional
Distribution Estimation (OCDE) is a game between Nature and an
estimator that follows the following protocol: (1) at each time step t,
Nature selects some xt ∈ X and reveals it to the estimator; (2) the
estimator then makes an estimation p̂t ∈ D(Ỹ), based on xt, ỹt−1; (3)
Nature then selects some p̃t ∈ D(Ỹ), samples ỹt ∼ p̃t and reveals ỹt to
the estimator. The goal is to find a (deterministic) estimator Φ that
minimizes the regret:

RegT (F ,Φ) = sup
f∈F

QT

[
T∑
t=1

L(p̃t, p̂t)− L(p̃t, f(xt))
]
, (10.4)

where p̂t = Φ(xt, ỹt−1), QT is the operator specified in Definition 10.1 by
setting Qx

y = D(Ỹ) for all x, y, and L is any divergence. We emphasize
that distributions p̃T are not necessarily realizable by f and are selected
completely arbitrarily. This is the key that allows us to deal with
unknown noisy label distributions.

We now establish the following key technical lemma:

Lemma 10.3. Let F be any distribution-valued finite class and L be
a Bregman divergence such that the induced loss ℓ(p, ỹ) def= L(eỹ, p) is
α-Exp-concave. Then, there exists an estimator Φ, such that

RegT (F ,Φ) ≤ log |F|
α

.

Moreover, estimation p̂t is a convex combination of {f(xt) : f ∈ F}.



186 Online Learning with Noisy Labels

Proof. Let Φ be the EWA algorithm as in Algorithm 3.3 with input
F , η := α and loss ℓ(p, ỹ) def= L(eỹ, p). Let ỹT be any realization of the
labels and et be the standard base of RM with value 1 at position ỹt
and zeros otherwise. By α-Exp-concavity of loss ℓ and the regret bound
from Theorem 3.5 (view xt = ψt(ỹt−1) and p̂t := ŷt), we have:

sup
f∈F ,ψT ,ỹT ∈ỸT

T∑
t=1

L(et, p̂t)− L(et, f(ψt(ỹt−1))) ≤ log |F|
α

, (10.5)

where ψT = {ψ1, · · · , ψT } runs over all functions ψt : Ỹt−1 → X for
t ∈ [T ]. Note that this bound holds point-wise w.r.t. any individual
ψT , ỹT .

Fix any ψT and distribution p̃T over ỸT . We denote Et as the con-
ditional expectation on ỹt over the randomness of ỹT ∼ p̃T conditioning
on ỹt−1 and denote p̃t as the conditional marginal. By Proposition 2.1,
we have for all t ∈ [T ] that:

Et
[
L(et, p̂t)− L(et, f(ψt(ỹt−1)))

]
= L(p̃t, p̂t)− L(p̃t, f(ψt(ỹt−1)))),

since Et[et] = p̃t for ỹt ∼ p̃t, p̂t depending only on ỹt−1 and L is
a Bregman divergence. We now take EỹT on both sides of (10.5). By
supE ≤ E sup and the law of total probability (i.e., EỹT [X1+· · ·+XT ] =
EỹT [E1[X1] + · · ·+ ET [XT ]] for any random variables XT ), we have:

sup
f∈F

sup
ψT ,p̃T

EỹT ∼p̃T

[
T∑
t=1

L(p̃t, p̂t)− L(p̃t, f(ψt(ỹt−1)))
]
≤ log |F|

α
,

where p̃T runs over all distributions over ỸT and ψT runs over all
functions ψt : Ỹt−1 → X . The lemma then follows by the operator
equivalence QT ≡ supψT ,p̃T EỹT and taking the kernel Qx

y := D(Ỹ)
(see the discussion following Definition 10.1). The last part follows by
the fact that the EWA algorithm automatically ensures p̂t is a convex
combination of {f(xt) : f ∈ F} for all t ∈ [T ].

Proof of Theorem 10.1. We define the following distribution valued
function class F using hypothesis class H and noise kernel K. For any
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x ∈ X , we denote by Qx
0 and Qx

1 the sets of noisy label distributions
corresponding to labels 0 and 1, respectively. Since the kernel K is well-
separated at scale γL under L2 divergence, we have, by the hyperplane
separation theorem, that there must exist qx

0 ∈ Qx
0 and qx

1 ∈ Qx
1 such

that L2(qx
0 , q

x
1 ) = L2(Qx

0 ,Qx
1 ) ≥ γL. We now define, for any h ∈ H the

function fh such that ∀x ∈ X , fh(x) = qx
h(x). Let F = {fh : h ∈ H} and

Φ be the estimator in Online Conditional Density Estimation (OCDE)
game from Lemma 10.3 with class F and L2 divergence (using xT , ỹT
from the original noisy classification game). Our classification predictor
is as follows:

ŷt = arg min
y
{L2(qxt

y , p̂t) : y ∈ {0, 1}}. (10.6)

That is, we predict the label y so that qxt
y is closer to p̂t under L2

divergence, where p̂t = Φ(xt, ỹt−1).
Let h∗ ∈ H be the underlying true classification function. We have

by Lemma 10.3 and 1/4-Exp-concavity of L2 divergence that 3

QT
K

[
T∑
t=1

L2(p̃t, p̂t)− L2(p̃t, fh∗(xt))
]
≤ 4 log |F|, (10.7)

where QT
K is the operator in Definition 10.1.

For any time step t, we denote by yt = h∗(xt) the true label. Since
qxt
y ∈ Qxt

y are the elements satisfying L2(qxt
0 , q

xt
1 ) = L2(Qx1

0 ,Qxt
1 ) ≥ γL

and p̂t is a convex combination of qxt
0 and qxt

1 (Lemma 10.3), we have
qxt
yt

is the closest element in Qxt
yt

to p̂t under L2 divergence. Note that,
we also have p̃t ∈ Qxt

yt
. Invoking Lemma 10.2, we find

L2(p̃t, p̂t)− L2(p̃t, qxt
yt

) ≥ L2(p̂t, qxt
yt

). (10.8)

Denote at = L2(p̃t, p̂t)−L2(p̃t, fh∗(xt)). We have, by (10.8) and fh∗(xt) =
qxt
yt

that at ≥ L2(p̂t, fh∗(xt)). Therefore:

1. For all t ∈ [T ], at ≥ 0, since ∀p, q, L2(p, q) ≥ 0;

2. If ŷt ̸= yt, then at ≥ γL/4. This is because the event {ŷt ≠ yt}
implies that L2(p̂t, qxt

yt
) ≥ L2(p̂t, qxt

1−yt
). Hence, L2(p̂t, fh∗(xt)) =

3Since QT
K[F (ψT , ỹT )] ≤ QT [F (ψT , ỹT )] for any kernel K and function F , where

QT is the unconstrained operator in (10.4).
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L2(p̂t, qxt
yt

) ≥ γL/4. Here, we used the following geometric fact:

2
√
L2(p̂t, qxt

yt ) ≥
√
L2(p̂t, qxt

yt ) +
√
L2(p̂t, qxt

1−yt
)

=
√
L2(qxt

yt , q
xt
1−yt

) ≥ √γL.

This implies that ∀t ∈ [T ], at ≥ γL
4 1{ŷt ̸= yt}, therefore:

T∑
t=1

1{ŷt ̸= yt} ≤
4
γL

T∑
t=1

L2(p̃t, p̂t)− L2(p̃t, fh∗(xt)).

The expected minimax risk now follows from (10.7) since |F| ≤ |H|.

Note that, for the specific setting in Example 10.1, our result yields
risk of the same order up to a constant factor, since 1− 2

√
η(1− η) =

Θ((1− 2η)2) for η ∈ [0, 1
2).

Remark 10.1. Note that the selection of L2 divergence plays a central
rule in the proof of Theorem 10.1 thanks to Lemma 10.2. A naive
extension to KL-divergence does not work, mainly due to the fact that
if q is a projection of point p onto a convex set under KL-divergence, it
does not necessarily imply that q is the projection of any point along the
line segment of p and q. Therefore, our central argument in the proof of
Theorem 10.1 that relates 1{ŷt ≠ yt} and L(p̃t, p̂t)− L(p̃t, fh∗(xt)) will
not go through. This can be remedied for certain special noise kernels,
as discussed in Section 10.5.

10.3 Reduction to Pairwise Comparison: a Generic Approach

As we showed in Section 10.2, minimax risk can be upper bounded by
16 log |H|

γL
if the kernel is uniformly separated by an L2 gap γL. However,

two issues remain: (i) the proof technique is not directly generalizable
to the multi-class label case. For instance, in the binary case we define
a class F with values qx

0 , q
x
1 that satisfy L2(qx

0 , q
x
1 ) = L2(Qx

0 ,Qx
1 ). How-

ever, in the multi-class case, this selection is less obvious since for any
y ∈ Y , the closest points in Qx

y to different sets Qx
y′ are different. There

is no canonical way of assigning the value fh(x); (ii) it is unclear whether
L2 gap is the right information-theoretical measure for characterizing
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minimax risk, compared to, for instance, the more natural f -divergences.
This section presents a general approach for addressing these issues via
a novel reduction to pairwise comparison of two-hypotheses.

We first introduce a few technical concepts before presenting our
main results. Recall that our robust online classification problem is
completely determined by the pair (H,K) of hypothesis class H ⊂ YX

and noise kernel K.

Definition 10.4. A robust online classification problem (H,K) is said
to be pairwise testable with confidence δ > 0 and error bound C(δ) ≥ 0,
if for any pair hi, hj ∈ H, the sub-problem ({hi, hj},K) admits a high
probability minimax risk Bδ({hi, hj},K) ≤ C(δ) at confidence δ (see
Definition 10.2).

Clearly, if (H,K) admits a high probability minimax risk Bδ(H,K),
then it is also pairwise testable with the same risk by taking C(δ) =
Bδ(H,K). Perhaps surprisingly, we will show in this section that the
converse holds as well up to a logarithmic factor.

Assume for now that the pair (H,K) is pairwise testable and class
H = {h1, · · · , hK} is finite of size K. Let Φi,j be the predictor for the
sub-problem ({hi, hj},K) with error bound C(δ/(2K)) and confidence
δ/(2K) > 0. Let xT , ỹT be any realization of problem (H,K). We define,
for any hi ∈ H and t ∈ [T ], a surrogate loss vector:

∀j ∈ [K], vit[j] = 1{Φi,j(xt, ỹt−1) ̸= hi(xt) and hi(xt) ̸= hj(xt)},
(10.9)

That is, the loss vit[j] = 1 if and only if hi(xt) ̸= hj(xt) and the predictor
Φi,j(xt, ỹt−1) differs from hi(xt). Given access to predictors Φi,js, our
prediction rule for (H,K) is then presented in Algorithm 10.2.

At a high level, Algorithm 10.2 tries to identify the ground truth clas-
sifier hk∗ using the testing results of Φi,js. Note that pairwise testability
implies, w.h.p., the errors made by tester Φk,k∗ on hk∗ is upper bounded
by C for all k ∈ [K] simultaneously. However, for any other pair i, j ̸= k∗,
the tester Φi,j does not provide any guarantees, since the samples used
to test hi, hj originate from hk∗ and is not realizable for Φi,j . The key
technical challenge is to extract the testing results for Φk,k∗ from the
other irrelevant tests (i.e., Φi,j with k∗ ̸∈ {i, j}), even when the k∗ is
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Algorithm 10.2 Predictor via Pairwise Hypothesis Testing
Input: Class H = {h1, . . . , hK}, testers Φi,j for i, j ∈ [K], and error
bound C

1: Initialize S1 ← {1, . . . ,K}.
2: for t← 1 to T do
3: Receive xt.
4: Sample index k̂t from St uniformly and make prediction:

ŷt ← hk̂t
(xt).

5: Receive noisy label ỹt.
6: Set St+1 ← ∅.
7: for i ∈ St do
8: Compute

lit = max
j∈[K]

t∑
r=1

vir[j],

where vit[j] is computed via Φi,j as in Equation (10.9).
9: if lit ≤ C then

10: Update St+1 ← St+1 ∪ {i}.
11: end if
12: end for
13: end for

unknown. This is resolved by our definition of lit in Algorithm 10.2, which
computes for each i the maximum testing loss over all of its competitors.
This ensures that, for ground truth k∗, loss lk∗

t ≤ C. While for any other
i ̸= k∗, we have lit ≥

∑t
r=1 vir[k∗] ≥ ∑t

r=1 1{hi(xr) ̸= hk∗(xr)} − C.
Therefore, any hypothesis hi for which lit > C cannot be the ground
truth. Algorithm 10.2 then maintains an index set St that eliminates all
hi for which lit > C, and makes prediction ŷt = hk̂t

(xt) with k̂t sampling
uniformly from St. In particular, Algorithm 10.2 enjoys the following
risk bound:

Theorem 10.4. Let H ⊂ YX be any finite hypothesis class of size K
and K be any noisy kernel. If the pair (H,K) is pairwise testable with
error bound C(δ) as in Definition 10.4, then for any δ > 0, the predictor
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in Algorithm 10.2 with C = C(δ/(2K)) achieves the high probability
minimax risk (Definition 10.2) upper bounded by:

Bδ(H,K) ≤ 2(1 + 2C(δ/(2K)) logK) + log(2/δ). (10.10)

Proof. Let hk∗ ∈ H be the underlying true classification function and
ψT be any fixed functions realizing the features xt = ψt(ỹt−1) (see
Definition 10.2). We take C = C(δ/2K) in Algorithm 10.2. By definition
of pairwise testability and union bound, we have w.p. ≥ 1− δ/2 over
the randomness of ỹT and the internal randomness of Φk,k∗s that for
all k ∈ [K],

T∑
t=1

1{hk∗(xt) ̸= Φk,k∗(xt, ỹt−1)} ≤ C(δ/(2K)). (10.11)

Note that for any other {i, j} ̸∋ k∗, equation (10.11) may not hold
for predictor Φi,j . However, our following argument relies only on the
guarantees for predictors Φk,k∗ , which effectively makes our pairwise
testing realizable.

We now condition on the event defined in (10.11). Let vkt with
k ∈ [K] and t ∈ [T ] be the surrogate loss vector, as defined in (10.9).
We observe the following key properties

1. We have for all t ∈ [T ] that:

max
j∈[K]

t∑
r=1

vk∗
r [j] ≤ C

(
δ

2K

)
; (10.12)

2. For any k ̸= k∗, we have for all t ∈ [T ]:

max
j∈[K]

t∑
r=1

vkr [j] ≥
(

t∑
r=1

1{hk(xr) ̸= hk∗(xt)}
)
−C

(
δ

2K

)
. (10.13)

The first property follows from the definition of vkt and (10.11). The
second property holds since the lower bound is attained when j = k∗.

We now analyze the performance of Algorithm 10.2. By property
(10.12), we know that k∗ ∈ St for all t ∈ [T ], i.e., |St| ≥ 1. Let Nt = |St|.
We define for all t ∈ [T ] the potential:

Et =
∑
k∈St

max
{

0, 2C(δ/(2K))−
t∑

r=1
1{hk(xr) ̸= hk∗(xr)}

}
.
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Clearly, we have Et ≤ 2C(δ/(2K))Nt. Let Dt = |{k ∈ St : hk(xt) ̸=
hk∗(xt)}|. We have:

Dt ≤ Nt −Nt+1 + Et − Et+1, (10.14)

Since for any k ∈ St such that hk(xt) ̸= hk∗(xt), either k is removed
from St+1 (which contributes at most Nt−Nt+1), or its contribution to
Et+1 decreases by 1 compared to Et. This follows from the construction
of Algorithm 10.2 and property (10.13): once the contribution of k to
Et reaches 0, it must be excluded from St+1. By the definition of ŷt, we
have:

E [1{hk∗(xt) ̸= ŷt}] = Dt

|St|
≤ Nt −Nt+1 + Et − Et+1

Nt
. (10.15)

From [83, Thm 2], we have:
T∑
t=1

Nt −Nt+1
Nt

≤
T∑
t=1

( 1
Nt

+ 1
Nt − 1 + · · ·+ 1

Nt+1 + 1

)

≤
K∑
k=1

1
k
≤ logK.

Moreover, we observe that:
T∑
t=1

Et − Et+1
Nt

(a)
≤ 2C(δ/(2K))N1 − E2

N1
+

T∑
t=2

Et − Et+1
Nt

(b)
≤ 2C(δ/(2K))(N1 −N2)

N1

+ 2C(δ/(2K))N2 − E3
N2

+
T∑
t=3

Et − Et+1
Nt

(c)
≤ 2C(δ/(2K))

T∑
t=1

Nt −Nt+1
Nt

≤ 2C(δ/(2K)) logK,

where (a) and (b) follow by Et ≤ 2C(δ/(2K))Nt and Nt ≥ Nt+1; (c)
follows by repeating the same argument for another T − 1 steps.

Therefore, we conclude

E
[
T∑
t=1

1{hk∗(xt) ̸= ŷt}
]
≤ (1 + 2C(δ/(2K))) logK,
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where the randomness is on the selection of k̂t ∼ St. Since our selection
of k̂ts are independent (conditioning on St) for different t, and the
indicator is bounded by 1 and non-negative, we can invoke Lemma 2.8
(second part) to obtain a high probability guarantee of confidence δ/2 by
introducing an extra log(2/δ) additive term. The theorem now follows
by a union bound with the event (10.11).

Remark 10.2. Note that, it is not immediately obvious that pairwise
testing of two hypotheses can be converted into a general prediction
rule a-priori. This is because the underlying true hypothesis is unknown,
and therefore many pairs tested do not provide any guarantees. We
are able to resolve this issue due to the definition of the loss lit (in
Algorithm 10.2) for each hypothesis i, which considers the maximum
loss among all its competitors.

Theorem 10.4 provides a black box reduction for converting any
testing rule for two hypotheses into a prediction rule for a general
hypothesis class H, introducing only an additional log |H| factor. This
effectively decouples the adversarial properties of the features xT from
the statistical properties of the noisy labels ỹT . The rest of this section
is devoted to instantiating Theorem 10.4 into various scenarios by
providing explicit pairwise testing rules.

10.3.1 Pairwise-Testing via Hellinger Gap.

As discussed above, the risk of noisy online classification can be reduced
to the pairwise testing Φij of two hypotheses. However, we still need to
construct the explicit pairwise testing rules. This section is devoted to
providing a generic testing rule for general kernels.

Let h1, h2 be any two hypotheses. We may assume that h1(x) ̸= h2(x)
for all features x, since the agreed features do not impact our pairwise
testing risk. We now provide a more compact characterization of the
kernel K without explicitly referring to the feature x. Following the
discussion after Definition 10.1, we can fix the feature selection rule
ψT , and define the kernel by specifying the constrained sets Qxt

y using
only prior noisy labels ỹt−1. Thus, we denote Qỹ

t−1

i := Qxt

hi(xt), where
xt = ψt(ỹt−1) and i ∈ {1, 2} .
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For any J ≤ T , we denote QJ1 and QJ2 as the sets of all (joint)
distributions over ỸJ induced by the kernel for h1, h2, respectively.
Equivalently, p ∈ QJi if and only if for all t ∈ [J ] and ỹt−1 ∈ Ỹt−1, we
have the conditional marginal pỹt|ỹt−1 ∈ Qỹ

t−1

i .
The pairwise testing of h1, h2 at time step J + 1 is then equivalent

to the (composite) hypothesis testing w.r.t. sets QJ1 and QJ2 . This is
typically resolved using Le Cam-Birgé testing [31, Chapter 32.2] if
the distributions are of product form. However, this does not serve
our purpose, since the distributions in QJi can have highly correlated
marginals. Our main result for addressing this issue is a conditional
version of Le Cam-Birgé testing, as stated in Theorem 10.5 below. To
the best of our knowledge, this conditional version is novel.

Recall that the squared Hellinger divergence is defined asH2(P,Q) =
infp∈P,q∈QH

2(p, q).

Theorem 10.5 (Conditional Le Cam-Birgé Testing). Let QJ1 and QJ2 be
the class of distributions induced by a kernel upto time J , as defined
above. If for all t ∈ [J ] and ỹt−1 ∈ Ỹt−1, sets Qỹ

t−1

1 ,Qỹ
t−1

2 are convex
and H2(Qỹ

t−1

1 ,Qỹ
t−1

2 ) ≥ γt for some γt ≥ 0. Then, there exists a testing
rule ϕ : ỸJ → {1, 2} such that: 4

sup
p∈QJ

1 ,q∈QJ
2

{
PrỹJ ∼p[ϕ(ỹJ) ̸= 1] + PrỹJ ∼q[ϕ(ỹJ) ̸= 2]

}

≤ 2
J∏
t=1

(1− γt/2) ≤ 2e− 1
2
∑J

t=1 γt .

Sketch. The proof requires a suitable application of the minimax the-
orem by expressing the testing error as a linear function and arguing
that QJi s are convex. The error bound is then controlled by a careful
application of the chain-rule of Rényi divergence. We defer the detailed
proof to Section 10.4.

Theorem 10.5 immediately implies the following cumulative risk
bound:

4Note that the tester ϕ implicitly depends on the feature selector ψJ . This is
not essential for our purposes, since such a dependency can be reduced to that of
xJ (via a more tedious minimax analysis that considers the joint distribution over
xJ , ỹJ ), which are observable to the tester.
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Proposition 10.1. Let {h1, h2} ⊂ YX and K be a noise kernel. For any
t ∈ [T ], we denote γt = inf ỹt−1 H2(Qỹ

t−1

1 ,Qỹ
t−1

2 ), where Qỹ
t−1

i is the
distribution class induced by K as discussed above. Then, for any δ > 0,
the high probability cumulative risk:

Bδ({h1, h2},K) ≤ arg min
n

{
n ∈ N :

n∑
t=1

γt ≥ 2 log(2/δ)
}
.

Proof. Let n∗ be the smallest number satisfying the RHS. If t ≤ n∗

(this can be checked at each time step t using only xt and K), we predict
arbitrarily. If t ≥ n∗ + 1, we use the tester ϕ in Theorem 10.5 with
J = n∗ to produce an index î ∈ {1, 2} and make the prediction hî(xt)
for all following time steps. That is, we only use the tester at step
n∗ + 1 and reuse the same testing result for all following time steps.
By Theorem 10.5, the probability of making errors after step n∗ + 1 is
upper bounded by δ. Therefore, the cumulative risk is upper bounded
by n∗ with probability ≥ 1− δ.

Instantiating to the well-separated kernels, we arrive at:

Corollary 10.6. Let {h1, h2} ⊂ YX and K be a well-separated kernel
with gap γH under Hellinger distance (Definition 10.3). Then, for any
δ ≥ 0 we have the high probability cumulative risk:

Bδ({h1, h2},K) ≤ 2 log(1/δ)
γH

.

Proof. Note that, for any time step t such that h1(xt) ̸= h2(xt), we have
the gap γt in Proposition 10.1 equals γH. We now have the following
prediction rule: for any time step t such that h1(xt) = h2(xt), we predict
the agreed label; else, we predict the same way as in Proposition 10.1.
Clearly, we only make errors for the second case. By Proposition 10.1,
we have that the number of errors is upper bounded by 2 log(1/δ)

γH
.

10.3.2 Characterization for Well-Separated Kernels

In this section, we establish matching lower and upper bounds (up to a
log |H| factor) for the minimax risk of a general multi-class hypothesis
class w.r.t. the Hellinger gap, in contrast to Theorem 10.1, which applies
only to binary label classes w.r.t. L2 gap.
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Theorem 10.7. Let H ⊂ YX be a finite class of size K, and K be
a kernel that is well-separated at scale γH w.r.t. Hellinger divergence.
Then, the high probability minimax risk with confidence δ > 0 is upper
bounded by:

Bδ(H,K) ≤ 8 log(4K/δ) logK
γH

+ log(2/δ). (10.16)

Moreover, for any kernel K such that there exist at least logK features
x for which there exists y ≠ y′ ∈ Y such that we have H2(Qx

y ,Qx
y′) ≤ γH,

then there exists a class H of size K for which:

r̃T (H,K) ≥ Ω
( logK

γH

)
.

Proof. By Corollary 10.6, we know that (H,K) is pairwise testable
with error bound C(δ) = 2 log(2/δ)

γH
. The upper bound on classification

risk then follows from Theorem 10.4 by noticing that C(δ/(2K)) =
2 log(4K/δ)

γH
.

To prove the lower bound, we denote τ = logK with K = |H|, and
x1, · · · ,xτ be τ distinct elements in X satisfying the condition of the
theorem. We define for any b ∈ {0, 1}τ a function hb such that for
all i ∈ [τ ], hb(xi) = yi if b[i] = 0 and hb(xi) = y′

i otherwise, where
yi ≠ y′

i ∈ Y are the elements that satisfy infp∈Qxi
yi
,q∈Qxi

y′
i

{H2(p, q)} ≤ γH.

Let H be the class consisting of all such hb. Let qi ∈ Qxi
yi

and q′
i ∈ Q

xi

y′
i

be the elements satisfying H2(qi, q′
i) ≤ γH. We now partition the features

xT into τ epochs, each of length T/τ , such that each epoch i has constant
feature xi. Let h be a random function selected uniformly from H. We
claim that for any prediction rule ŷt and any epoch i we have:

Eh,ỹT

 (i+1)T/τ∑
t=iT/τ−1

1{h(xt) ̸= ŷt}

 ≥ Ω
( 1
γH

)
, (10.17)

where ỹt ∼ qi if h(xi) = yi and ỹt ∼ q′
i otherwise. The theorem now

follows by counting the errors for all τ epochs.
We now establish (10.17) using the Le Cam’s two point method.

Clearly, for each epoch i, the prediction performance depends only on
the label yi = h(xi), which is uniform over {yi, y′

i} and independent
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for different epochs by construction. For any time step j during the ith
epoch, we denote by ỹj−1 and ỹ′j−1 the samples generated from qi and
q′
i, respectively. By the Le Cam’s two point method [31, Theorem 7.7]

the expected error at step j is lower bounded by:

1− TV(ỹj−1, ỹ′j−1)
2 ≥

1−
√
H2(ỹj−1, ỹ′j−1)(1−H2(ỹj−1, ỹ′j−1)/4)

2
(10.18)

where the inequality follows from [31, Equation 7.20]. Note that the
RHS of (10.18) is monotonically decreasing w.r.t. H2(ỹj−1, ỹ′j−1), since
H2(p, q) ≤ 2 for all p, q.

By the tensorization of Hellinger divergence [31, Equation 7.23], we
have:

H2(ỹj−1, ỹ′j−1) = 2− 2(1−H2(qi, q′
i)/2)j−1 ≤ 2− 2(1− γH/2)j−1,

where the last inequality is implied by H2(qi, q′
i) ≤ γH. Using the fact

that log(1 − x) ≥ −x
1−x , we have, if γH ≤ 1 and j − 1 ≤ 1

γH
then

2− 2(1− γH/2)j−1 ≤ 2(1− e−1) < 2. Therefore, the RHS of (10.18) is
lower bounded by an absolute positive constant for all j − 1 ≤ 1

γH
, and

hence the expected cumulative error will be lower bounded by Ω(1/γH)
during epoch i. This completes the proof.

It is interesting to note that the bound in Theorem 10.7 is indepen-
dent of both the size of label set Y and the noisy observation set Ỹ, as
well as the time horizon T . Moreover, the dependency on the Hellinger
gap γH is tight upto only a logarithmic factor log |H|. This factor is
inherent from our reduction to pairwise testing in Algorithm 10.2 and
we believe that removing it would require new techniques.

Remark 10.3. Note that H2(p, q) ≥ 4L2(p, q) holds for any p, q. Thus,
the Hellinger dependency of Theorem 10.7 on γH is tighter than the
L2 dependency of Theorem 10.1. Specifically, if we take p to be the
uniform distribution over Ỹ and q to be the distribution that takes
half of the elements with probability mass 1+ϵ

M and half with 1−ϵ
M , then,

L2(p, q) = ϵ2

M , while H2(p, q) ≥ Ω(ϵ2). Therefore, the differences can
grow linearly w.r.t. the size of set Ỹ.
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10.3.3 Soft-Constrained Gaps

The well-separatedness condition in Theorem 10.1 and Theorem 10.7
requires a uniform gap for all xts. This may sometimes be too restrictive.
We demonstrate in this section that such a “hard" gap can be relaxed
to a “soft" gap, while still achieving sub-linear risk.

To this end, we consider a slightly relaxed adversary, where we
require that for some constant A > 0 and 0 ≤ α < 1, the following
soft-constraint holds:

∀r ∈ (0, 1/2], 1
T

T∑
t=1

1
{

inf
ỹt−1∈Ỹt−1

inf
y ̸=y′∈Y

H2(Qỹt−1
y ,Qỹ

t−1

y′ ) ≤ r
}
≤ Ar

α
1−α ,

(10.19)
where Qỹt−1

y := Qψt(ỹt−1)
y for some fixed (unknown) feature selector ψT

as in Section 10.3.1.
The following result follows similarly as Theorem 10.7:

Proposition 10.2. We have:

sup
K

sup
H:|H|≤K

r̃T (H,K) = Θ̃(T 1−α),

where the Θ̃ hides poly-logarithmic factors w.r.t. T and K, and K runs
over all kernels that satisfy (10.19).

Proof. By Theorem 10.4, we only need to consider the testing of two
hypotheses {h1, h2} to derive an upper bound. Let γ be a parameter
to be determined later. We have by (10.19) that the number of steps t
for which inf ỹt−1∈Ỹt−1 infy ̸=y′∈Y H

2(Qỹt−1
y ,Qỹ

t−1

y′ ) ≤ γ is upper bounded
by Aγ

α
1−αT . We may assume, w.l.o.g., that all such steps are within

the first Aγ
α

1−αT time steps, since we can simply filter out such steps
(using kernel map K and the observed features xts) when constructing
the testing rule. Note that the rest of the steps satisfy for all ỹt−1 and
y ≠ y′ ∈ Y that H2(Qỹt−1

y ,Qỹ
t−1

y′ ) ≥ γ. By Corollary 10.6, the number
of errors after step Aγ

α
1−αT is upper bounded by Õ( 1

γ ). Therefore, the
total number of errors is upper bounded by

inf
0≤γ<1/2

Aγ
α

1−αT + 2 log(1/δ)
γ

≤ Õ(T 1−α),
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where the upper bound follows by taking γ = T−(1−α).
To see the lower bound, we define a kernel with the first Aγ

α
1−αT

steps of gap γ (to be determined) and define the remaining steps
arbitrarily as long as it satisfies (10.19). By Theorem 10.7, we have if
Aγ

α
1−αT ≥ log |H|

γ , then an Ω( log |H|
γ ) lower bound holds. This is satisfied

when taking γ =
(

log |H|
T

)1−α
, which completes the proof.

10.3.4 Unknown Gap Parameters.

While our previous results provide sub-linear risk that is tight up to poly-
logarithmic factors, we have assumed that full knowledge of the kernel
sets Qxt

y s is available to the learner. In some cases, such information
cannot be known completely (or only partially known). For instance, in
the classical setting of Tsybakov noise as discussed in Diakonikolas et
al. (2021), the gap parameters are not assumed to be known.

To account for this, we introduce the following noise kernel, analo-
gous to the Tsybakov noise in batch learning. For simplicity, we take
Y = Ỹ = {0, 1}. Let ỹ ∈ Ỹ , we denote eỹ as the distribution over Ỹ that
assigns probability 1 on ỹ and denote u as uniform distribution over Ỹ .
For any xT , the kernel K satisfies Qxt

y = {λ′ey + (1 − λ′)u : λ′ ≥ λt},
subject to the condition that for some A > 0 and 0 ≤ α < 1:

∀r ∈ (0, 1/2], 1
T

T∑
t=1

1
{
λt
2 ≤ r

}
≤ Ar

α
1−α . (10.20)

We assume that the parameters λts are (obliviously) selected independent
of the noisy observation ỹT . Crucially, we assume that the parameters
λts are unknown to the learner. Observe that, the set Qxt

y is completely
determined by the parameters λt and y, irrespective of xt.

Theorem 10.8. Let H ⊂ {0, 1}X be any finite class and K be a kernel
that satisfies condition (10.20). Then, the expected minimax risk is
upper bounded by:

r̃T (H,K) ≤ Õ(T
2(1−α)

2−α ),

where Õ hides poly-logarithmic factors on T and |H|. Moreover, there
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exist class H and kernel K satisfying (10.20), such that:

r̃T (H,K) ≥ Ω̃(T
2(1−α)

2−α ).
Proof. The lower bound follows by the same argument as in Proposi-
tion 10.2 by noticing that H2(Qxt

0 ,Q
xt
1 ) = Θ(λ2

t ) for sufficiently small
λt. Therefore, it is sufficient to find the λ for which Aλ

α
1−αT ≥ log |H|

λ2 .

This is satisfied when λ =
(

log |H|
AT

) 1−α
2−α .

For the upper bound, we leverage Theorem 10.4 by constructing
an explicit universal pairwise testing rule. Let h1, h2 be any two hy-
pothesises. We assume, w.l.o.g. (by relabeling), that h1(x) = 0 and
h2(x) = 1 for all x. At each time step t, we compute the empirical mean
µ̂t = ỹ1+···+ỹt−1

t−1 , and predict 0 if µ̂t ≤ 1
2 and predict 1 otherwise. Let

λ1, · · · , λT be any configuration of the parameters. Assume, w.l.o.g.,
that h1 is the ground truth classifier. We have for any given ỹt−1 the
conditional expectation E[ỹt | ỹt−1] ≤ 1

2 −
λt
2 . By the Hoeffding-Azuma

inequality (Lemma 2.7), we have for all t ∈ [T ], the error probability:

Pr
[
µ̂t >

1
2

]
≤ e−(

∑t−1
i=1 λi)2/2(t−1).

Therefore, for any given δ > 0, we have by the union bound that w.p.
≥ 1 − δ the total number of errors made by the predictor is upper
bounded by

errT =
T∑
t=1

1


t−1∑
j=1

λj ≤
√

2t log(T/δ)

 . (10.21)

We now upper bound errT using property (10.20). Note that, for any
given gap parameters λ1, · · · , λT , the worst configuration for errT is
when λ1 ≤ λ2 ≤ · · · ≤ λT . To see this, we use the following “switching"
argument. Suppose otherwise, there exists some j for which λj+1 < λj .
We show that switching λj and λj+1 will not decrease errT . This follows
from the fact that the switch will not affect any time steps except
step j + 1 in which case the sum of gap parameters decreases. We
can therefore assume, w.l.o.g., that the gap parameters are monotone
increasing. Now, we have by (10.20) that for all j ∈ [T ]:

T∑
t=1

1
{
λt ≤ (j/AT )

1−α
α

}
≤ j.
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This implies that for any time step j, we have λj >
(

j
AT

) 1−α
α since

the gap parameters are monotone increasing. Therefore, by integration
approximation, we have:

n∑
j=1

λj ≥ Ω(n
1
αT− 1−α

α ).

Setting n
1
αT− 1−α

α ≤ n
1
2 ·
√

2 log(T/δ), we find that n = Õ(T
2(1−α)

2−α ).
This implies that for any time step t ≥ n, the t’th indicator in (10.21)
equals 0. Therefore, the risk of pairwise testing is upper bound by
errT ≤ Õ(T

2(1−α)
2−α ) w.p. ≥ 1− δ, where Õ hides the factor log(T/δ). The

upper bound of the theorem now follows by Theorem 10.4.

Remark 10.4. Observe that the lower and upper bounds of Theorem 10.8
match up to poly-logarithmic factors w.r.t. T and |H|. Moreover, the
proof technique for the upper bound can be generalized to the case when
Qx

0 encompasses any distributions over [0, 1] with means in [0, 1−λt
2 ]

(and in [1+λt
2 , 1] for Qx

1 ), not only for Bernoulli distributions as in
(10.20).

Note that, the pairwise testing rule derived in the proof of Theo-
rem 10.8 requires no information about the underlying distributions.
This differs from the general testing rule derived from Theorem 10.5,
which requires the likelihood ratio of distributions p∗

1 ∈ QJ1 and p∗
2 ∈ QJ2

that achieve ||p∗
1 − p∗

2||TV = TV(QJ1 ,QJ2 ) (see Section 10.4).

10.4 Proof of Theorem 10.5

We start with an application of the minimax theorem to hypothesis
testing 5.

Lemma 10.9. Let P0 and P1 be two sets of distributions over a fi-
nite domain Ω. If P0 and P1 are convex under L1 distance (i.e., total
variation), then

min
ϕ : Ω→[0,1]

sup
p0∈P0,p1∈P1

{Eω∼p0 [1− ϕ(ω)] + Eω∼p1 [ϕ(ω)]} =

5This result was mentioned in [31, Chapter 32.2], without providing a proof.
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= 1− inf
p0∈P0,p1∈P1

||p0 − p1||TV.

Moreover, if ϕ∗ is the function that attains minimal, then the tester
ψ∗(ω) = 1{ϕ∗(ω) < 0.5} achieves:

sup
p0∈P0,p1∈P1

{Prω∼p0 [ψ∗(ω) ̸= 0] + Prω∼p1 [ψ∗(ω) ̸= 1]} ≤

≤ 2(1− inf
p0∈P0,p1∈P1

||p0 − p1||TV).

Proof. Observe that the function ϕ can be viewed as a vector in [0, 1]Ω.
Moreover, the distributions over Ω can be viewed as vectors in [0, 1]Ω
as well. Therefore, we have

Eω∼p0 [1− ϕ(ω)] + Eω∼p1 [ϕ(ω)] = ⟨p0, 1− ϕ⟩+ ⟨p1, ϕ⟩,

which is a linear function w.r.t. both (p0, p1) and ϕ. Since the both
P0 × P1 and [0, 1]Ω are convex and [0, 1]Ω is compact, we can invoke
the minimax theorem [9, Thm 7.1] to obtain:

min
ϕ : Ω→[0,1]

sup
p0∈P0,p1∈P1

{Eω∼p0 [1− ϕ(ω)] + Eω∼p1 [ϕ(ω)]}

= sup
p0∈P0,p1∈P1

min
ϕ : Ω→[0,1]

{Eω∼p0 [1− ϕ(ω)] + Eω∼p1 [ϕ(ω)]}

= sup
p0∈P0,p1∈P1

{1− ||p0 − p1||TV},

where the last equality follows by Le Cam’s two point lemma [31,
Theorem 7.7]. Let ϕ∗ be the function that attains minimal and ψ∗(ω) =
1{ϕ∗(ω) < 0.5}. We have 1{ψ∗(ω) ̸= i} ≤ 2(1 − i − ϕ∗(ω)) for all
i ∈ {0, 1}. To see this, for i = 0, we have ψ∗(ω) ̸= 0 only if ϕ∗(ω) < 0.5,
thus 1− ϕ∗(ω) ≥ 0.5 (the case for i = 1 follows similarly). Therefore,
we have for all p0 ∈ P0, p1 ∈ P1:

Prω∼p0 [ψ∗(ω) ̸= 0]+Prω∼p1 [ψ∗(ω) ̸= 1] ≤ 2(Eω∼p0 [1−ϕ∗(ω)]+Eω∼p1 [ϕ∗(ω)]).

This completes the proof.

We have the following key property:

Lemma 10.10. Let QJ1 and QJ2 be the sets in Theorem 10.5. Then QJ1
and QJ2 are convex.
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Proof. Let p1, p2 ∈ QJi for i ∈ {1, 2} and λ ∈ [0, 1]. We need to show
that p = λp1 + (1 − λ)p2 ∈ QJi as well. For any given t ∈ [J ] and
ỹt−1 ∈ Ỹt−1, we have:

p(ỹt | ỹt−1) = λp1(ỹt) + (1− λ)p2(ỹt)
λp1(ỹt−1) + (1− λ)p2(ỹt−1)

= λ
p1(ỹt−1)
p(ỹt−1) p1(ỹt | ỹt−1) + (1− λ)p2(ỹt−1)

p(ỹt−1) p2(ỹt | ỹt−1) ∈ Qỹ
t−1

i

where the last inclusion follows by convexity of Qỹ
t−1

i as assumed in
Theorem 10.5. Therefore, we have p ∈ QJi by definition of Qi.

Now, our main technical problem is to bound the total variation
TV(QJ1 ,QJ2 ). The primary challenge comes from controlling the depen-
dencies of conditional marginals of the distributions. To proceed, we
now introduce the concept of Renyi divergence. Let p1, p2 be two dis-
tributions over the same finite domain Ω, the α-Renyi divergence is
defined as:

Dα(p1, p2) = 1
α− 1 logEω∼p2

[(
p1(ω)
p2(ω)

)α]
.

If p, q are distributions over domain Ω1×Ω2 and r is a distribution over
Ω1, then the conditional α-Renyi divergence is defined as:

Dα(p, q | r) = 1
α− 1 logEω1∼r

 ∑
ω2∈Ω2

p(ω2 | ω1)αq(ω2 | ω1)1−α

 .
The following property about Renyi divergence is well known [31,

Chapter 7.12]:

Lemma 10.11. Let p, q be two distributions over Ω1 × Ω2 and p(1) and
q(1) be the restrictions of p, q on Ω1, respectively. Then the following
chain rule holds:

Dα(p, q) = Dα(p(1), q(1)) +Dα(p, q | r),

where r(ω1) = p(1)(ω1)αq(1)(ω1)1−αe−(α−1)Dα(p(1),q(1)) is a distribution
over Ω1.
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We now arrive at our main technical result for bounding the Renyi
divergence between QJ1 and QJ2 in Theorem 10.5:

Proposition 10.3. Let QJ1 and QJ2 be the sets in Theorem 10.5. If for
all t ∈ [J ] and ỹt−1 ∈ Ỹt−1, we have inf

pt∈Qỹt−1
1 ,qt∈Qỹt−1

2
Dα(pt, qt) ≥ ηt

for some ηt ≥ 0. Then

inf
p∈QJ

1 ,q∈QJ
2

Dα(p, q) ≥
J∑
t=1

ηt.

Proof. We prove by induction on J . The base case for J = 1 is trivial.
We now prove the induction step with J ≥ 2. For any pair p ∈ QJ1
and q ∈ QJ2 , we have by Lemma 10.11 that Dα(p, q) = Dα(p(1), q(1)) +
Dα(p, q | r), where p(1), q(1) are restrictions of p, q on ỹJ−1 and r is a
distribution over ỸJ−1. By definition of α-Renyi divergence, we have:

Dα(p, q | r) ≥ inf
ỹJ−1

1
α− 1 log

∑
ỹJ ∈Ỹ

p(ỹJ | ỹJ−1)αq(ỹJ | ỹJ−1)1−α

= inf
ỹJ−1

Dα(pỹJ |ỹJ−1 , qỹJ |ỹJ−1)

(a)
≥ inf

p∈QỹJ

1 ,q∈QỹJ

2

Dα(p, q)
(b)
≥ ηJ ,

where (a) follows since pỹJ |ỹJ−1 ∈ Qỹ
J

1 and qỹJ |ỹJ−1 ∈ Qỹ
J

2 by the
definition of QJ1 and QJ2 ; (b) follows by assumption. The result then
follows by induction hypothesis Dα(p(1), q(1)) ≥ ∑J−1

t=1 ηt, since p(1) ∈
QJ−1

1 and q(1) ∈ QJ−1
2 .

The following result converts the Renyi divergence based bounds to
that with Hellinger divergence.

Proposition 10.4. Let QJ1 and QJ2 be the sets in Theorem 10.5. If for
all t ∈ [J ] and ỹt−1 ∈ Ỹt−1, we have H2(Qỹ

t−1

1 ,Qỹ
t−1

2 ) ≥ γt for some
γt ≥ 0. Then:

inf
p∈QJ

1 ,q∈QJ
2

H2(p, q) ≥ 2
(

1−
J∏
t=1

(1− γt/2)
)
.
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Proof. Observe that, for any distributions p, q we have:

H2(p, q) = 2(1− e− 1
2D1/2(p,q)). (10.22)

Specifically, for given p ∈ QJ1 and q ∈ QJ2 , we have:

1−H2(p, q)/2 = e− 1
2D1/2(p,q) ≤ e− 1

2
∑J

t=1 ηt =
J∏
t=1

e− 1
2ηt ≤

J∏
t=1

(1−γt/2),

where ηts are the constants in Proposition 10.3 and the last inequality
follows by e− 1

2ηt ≤ 1 − γt/2 due to (10.22) again. This completes the
proof.

Proof of Theorem 10.5. We have by Lemma 10.9 that the testing error
is upper bounded by 1−infp∈Q1,q∈Q2 ||p−q||TV. Fix any pair p, q, we have
by relation between Hellinger and total variation that 1− ||p− q||TV ≤
1− 1

2H
2(p, q). The result follows by Proposition 10.4.

10.5 Tight Bounds via Log-loss

In this section, we introduce a refined technique based on the reduction
to online conditional distribution estimation as discussed in Section 10.2.
We shall use again Lemma 10.3 but with log-loss. This yields tight risk
dependency on both log |H| and the gap parameter for certain special,
yet important, noise kernels.

10.5.1 The Randomized Response Mechanism

Let Y = Ỹ = {1, · · · ,M}. We denote by u the uniform distribution
over Ỹ and eỹ the distribution that assigns probability 1 on ỹ ∈ Ỹ . For
any η > 0, we define a homogeneous (i.e., independent of x) kernel:

∀x ∈ X , y ∈ Y, Kη(x, y) = {(1− η′)ey + η′u : η′ ∈ [0, η)}.

Note that, this kernel can be interpreted as the randomized response
mechanism with multiple outcomes in differential privacy [90], where η is
interpreted as the noise level of perturbing the true labels. For instance,
it achieves (ϵ, 0)-local differential privacy if we set η = M

eϵ−1+M .
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Theorem 10.12. Let H ⊂ YX be any finite class and Kη be as defined
above with 0 ≤ η < 1. Then, the expected minimax risk is upper
bounded by:

r̃T (H,Kη) ≤ log |H|
(1− η)2/2 .

Moreover, the high probability minimax risk at confidence δ > 0 is upper
bounded by:

Bδ(H,Kη) ≤ log |H|+ 2 log(1/δ)
(1− η)2/4 .

Furthermore, for 1− η ≪ 1
M we have Bδ(H,Kη) ≤ O

(
log |H|+log(1/δ)

M(1−η)2

)
.

Proof. Our proof follows a similar path as the proof of Theorem 10.1.
For any h ∈ H, we define a distribution-valued function fh such that
fh(x) = (1− η)eh(x) + ηu. Let F = {fh : h ∈ H}. Invoking Lemma 10.3
with log-loss and using the fact the KL-divergence is Bregman and
1-Exp-concave, there exist estimators p̂T such that:

sup
f∈F

QT
K

[
T∑
t=1

KL(p̃t, p̂t)− KL(p̃t, f(xt))
]
≤ log |H|,

where QT
K is the operator in Definition 10.1. We now define the following

classifier:
ŷt = arg max

y
{p̂t[y] : y ∈ Y}.

Note that, this is a multi-class classifier. Let h∗ ∈ H be the underlying
true classification function and p̃T be the noisy label distributions
selected by the adversary. We have:

Lemma 10.13. The following holds for all t ≤ T :

KL(p̃t, p̂t)− KL(p̃t, fh∗(xt)) ≥ 0.

Moreover, if ŷt ̸= h∗(xt) then:

KL(p̃t, p̂t)− KL(p̃t, fh∗(xt)) ≥ (1− η)2/2.

Proof of the Lemma. Let yt = h∗(xt) and et ∈ D(Ỹ) be the distribution
that assigns probability 1 on yt. By the definition fh∗(xt) = λet+(1−λ)u
and p̃t = λtet + (1 − λt)u, where λ = 1 − η and λt = 1 − ηt for
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some ηt ≤ η. Since 0 ≤ ηt ≤ η, we have 1 ≥ λt ≥ λ. Note that,
KL(p̃t, p̂t)−KL(p̃t, fh∗(xt)) is a linear function w.r.t. λt (Proposition 2.1),
and it takes the minimal value at λt ∈ {1, λ}; therefore:

KL(p̃t, p̂t)−KL(p̃t, fh∗(xt)) ≥ min{log(fh∗(xt)[yt]/p̂t[yt]),KL(fh∗(xt), p̂t)}.

Clearly, the second KL-divergence term is positive. We now show that
log(fh∗(xt)[yt]/p̂t[yt]) ≥ 0. To see this, we have by Lemma 10.3 that p̂t is
a convex combination of {f(xt) : f ∈ F} and therefore p̂t = λat+(1−λ)u
for some at ∈ D(Ỹ). This implies that p̂t[yt] = λat[yt] + (1− λ) 1

M and
fh∗(xt)[yt] = λ+ (1−λ) 1

M . Since at[yt] ≤ 1, we have fh∗(xt)[yt] ≥ p̂t[yt].
The first part of the claim now follows.

We now prove the second part of the claim. Note that in order for
ŷt ̸= yt we must have at[yt] ≤ 1

2 , since ŷt is defined to be the label with
maximum probability mass under p̂t. Therefore,

log(fh∗(xt)[yt]/p̂t[yt]) ≥ log
(
λ+ (1− λ)/M
λ/2 + (1− λ)/M

)
= log

(
1 + λ/2

λ/2 + (1− λ)/M

)
≥ log(1 + λ)

where the second inequality follows from λ/2 + (1 − λ)/M ≤ 1/2.
Furthermore, we have:

KL(fh∗(xt), p̂t) ≥
1
2 ||fh

∗(xt)− p̂t||21 ≥ λ2/2,

where the first inequality is a consequence of Pinsker’s inequality [31]
and the second inequality follows by ||fh∗(xt)− p̂t||1 = λ||eyt − at||1 =
λ(2|1− at[yt]|) ≥ λ, since at[yt] ≤ 1

2 . The claim now follows by the fact
that log(1 + λ) ≥ λ2/2 for all 0 ≤ λ ≤ 1.

The first part of the theorem now follows by the same argument
as the proof of Theorem 10.1. The proof of the second and third
parts requires a careful analysis relating log-loss with the Hellinger
distance and employing a martingale concentration inequality similar
to [91, Lemma A.14]. We defer the technical proof to Section 10.5.3 for
readability.

To complement the upper bounds of Theorem 10.12, we have the
following matching lower bound follows directly from Theorem 10.7:
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Corollary 10.14. There exists a class H such that for 1− η ≪ 1
M we

have:
r̃(H,Kη) ≥ Ω

( log |H|
M(1− η)2

)
.

Proof. Specializing to the setting in Theorem 10.7, we know that the
squared Helliger gap is of order:√ η

M
−

√
1− (M − 1)η

M

2

∼ M(1− η)2

4 ,

when 1− η ≪ 1
M (by Taylor expansion). This implies an Ω

(
log |H|
M(1−η)2

)
lower bound.

Remark 10.5. Taking η = M
eϵ−1+M for sufficiently small ϵ, we have

r̃T (H,Kη) = Θ
(
M log |H|

ϵ2

)
,

and the randomized response mechanism with kernel Kη achieves (ϵ, 0)-
local differential privacy. This holds even when the noise parameters
used by different local parties vary, as long as they are upper bounded
by η.

10.5.2 Kernel Set of Size One

In this section, we establish an upper bound for the special case when
the kernel set size |Qx

y | = 1 for all x, y. This matches the lower bound
in Theorem 10.7 up to a constant factor.

Theorem 10.15. Let H ⊂ YX be any finite class and K be any noise
kernel that is well-separated at scale γH w.r.t. squared Hellinger distance
such that |Qx

y | = 1 for all x, y. Then the high probability minimax risk
at confidence δ > 0 is upper bounded by:

Bδ(H,K) ≤ O
( log(|H|/δ)

γH

)
.

Proof. Our proof follows a similar path as in the proof of Theorem 3.3,
but replaces L2 loss with log-loss. Specifically, for any h ∈ H, we define
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fh(x) = qx
h(x), where qx

h(x) is the unique element in Qx
h(x). Denote

F = {fh : h ∈ H}. We run the EWA algorithm (Algorithm 3.1) over F
with η = 1 and ℓ being the log-loss, and produce an estimator p̂T . The
classifier is then given by:

ŷt = arg min
y∈Y
{H2(qxt

y , p̂t)}.

Now, our key observation is that the noisy label distribution p̃t = fh∗(xt)
is well-specified (since |Qx

y | = 1, the only choice for p̃t is fh∗(xt)), where
h∗ is the ground truth classifier. Therefore, invoking [91, Lemma A.14],
we find:

Pr
[
T∑
t=1

H2(p̃t, p̂t) ≤ log |F|+ 2 log(1/δ)
]
≥ 1− δ.

We claim that 1{ŷt ≠ h∗(xt)} ≤ 4
γH
H2(p̃t, p̂t). Clearly, this automat-

ically satisfies if ŷt = h∗(xt). For ŷt ̸= h∗(xt), we have H2(qxt
ŷt
, p̂t) ≤

H2(qxt

h∗(xt), p̂t) = H2(p̃t, p̂t) by definition of ŷt. This implies that:

H2(p̃, p̂t) ≥
1
4H

2(qxt
ŷt
, qxt

h∗(xt)) ≥
γH

4 ,

where the first inequality follows by triangle inequality of Hellinger
distance (the factor 1

4 comes from the conversion from squared Hellinger
distance to Hellinger distance), and the second inequality follows by
definition of γH. Therefore, we have w.p. ≥ 1− δ that:

T∑
t=1

1{ŷt ̸= h∗(xt)} ≤
4
γH

(log |F|+ 2 log(1/δ)).

This completes the proof since |H| ≥ |F|.

Observe that the key ingredient in the proof of Theorem 10.15 is
the realizability of p̃t by fh∗ due to the property |Qx

y | = 1, which does
not hold for general kernels.

10.5.3 Proof of High Probability Minimax Risk of Theorem 10.12

We begin with the following key inequality:
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Lemma 10.16. Let p̃ = (1 − η′)eỹ + η′u, p = (1 − η)eỹ + ηu and
p̂ = (1− η)a+ ηu, where eỹ, a, u ∈ D(Ỹ) and 0 ≤ η′ ≤ η < 1, such that
eỹ is the distribution assigning probability 1 on ỹ, u is uniform over Ỹ
and a ∈ D(Ỹ) is arbitrary. Then:

∑
ỹ′∈Ỹ

p̃[ỹ′]
√
p̂[ỹ′]
p[ỹ′] ≤

∑
ỹ′∈Ỹ

p[ỹ′]
√
p̂[ỹ′]
p[ỹ′] =

∑
ỹ′∈Ỹ

√
p[ỹ′]p̂[ỹ′]. (10.23)

Proof. Denote |Ỹ| = M , and let r ∈ RỸ be the vector such that
r[ỹ′] =

√
p̂[ỹ′]/p[ỹ′]. We have the LHS of (10.23) equals eT

ỹ r+η′(u−eỹ)Tr.
We claim that f(η′) def= eT

ỹ r+η′(u−eỹ)Tr attains maximum when η′ = η,
which will finish the proof. It is sufficient to prove that (u− eỹ)Tr ≥ 0
since f(η′) is a linear function w.r.t. η′. We have:

uTr = 1
M

∑
ỹ′∈Ỹ

√
p̂[ỹ′]
p[ỹ′] , e

T
ỹ r =

√
p̂[ỹ]
p[ỹ] .

We only need to show that ∀ỹ′ ∈ Ỹ with ỹ′ ̸= ỹ, we have
√
p̂[ỹ′]/p[ỹ′] ≥√

p̂[ỹ]/p[ỹ], i.e.,
p[ỹ]
p[ỹ′] ≥

p̂[ỹ]
p̂[ỹ′] .

Note that, p[ỹ] = 1 − η + η
M , p[ỹ′] = η

M , p̂[ỹ] = (1 − η)a[ỹ] + η
M and

p̂[ỹ′] = (1− η)a[ỹ′] + η
M , i.e., we have p[ỹ] ≥ p̂[ỹ], p̂[ỹ′] ≥ p[ỹ]. The result

now follows by the simple fact that for any a ≥ b, c ≥ d ≥ 0 we have
a
d ≥

b
c .

We are now ready to state our main result, which establishes the
high probability bounds in Theorem 10.12.

Theorem 10.17. Let H ⊂ YX be any finite class and Kη be the kernel
in Section 10.5 with 0 ≤ η < 1. Then, the high probability minimax risk
at confidence δ is upper bounded by:

Bδ(H,P,Kη) ≤ log |H|+ 2 log(1/δ)
(1− η)2/4 .

Furthermore, for 1−η ≪ 1
M we have Bδ(H,P,Kη) ≤ O

(
log |H|+log(1/δ)

M(1−η)2

)
.
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Proof. Let F be the class as in the proof of Theorem 10.12 and p̂t be
produced by the EWA algorithm under Log-loss. We have by Proposi-
tion 2.2 and Theorem 3.5 that for any ỹT ∈ ỸT :

sup
xT ∈X T

T∑
t=1

log f
∗(xt)[ỹt]
p̂t[ỹt]

≤ log |F|

where f∗ is the corresponding function of the underlying truth h∗ ∈ H
(see the proof of Theorem 10.12). We now assume ỹT are sampled from
p̃T , where p̃T are the noisy label distributions selected by the adversary.
Denote by Et the conditional expectation on ỹt−1. We have:

Et
[
e

− 1
2 log f∗(xt)[ỹt]

p̂t[ỹt]

]
= Eỹt∼p̃t

√
p̂[ỹt]

f∗(xt)[ỹt]
≤
∑
ỹt∈Ỹ

√
p̂[ỹt]f∗(xt)[ỹt],

where the inequality follows from Lemma 10.16. By a similar argument
as in the proof of [91, Lemma A.14], we have:

log
∑
ỹt∈Ỹ

√
p̂[ỹt]f∗(xt)[ỹt] = log

(
1− 1

2H
2(p̂t, f∗(xt))

)
≤ −1

2H
2(p̂t, f∗(xt)),

where the first equality follows by definition of squared Hellinger diver-
gence. Taking Xt = log f∗(xt)[ỹt]

p̂t[ỹt] , α = 1
2 and invoking Lemma 2.9 we

have w.p. ≥ 1− δ

Pr
[
T∑
t=1

H2(p̂t, f∗(xt)) ≤ log |F|+ 2 log(1/δ)
]
≥ 1− δ.

Let now ŷt = arg maxỹ{p̂t[ỹ] : ỹ ∈ Ỹ}. We have, if ŷt ̸= h∗(xt)

H2(p̂t, f∗(xt)) ≥ ||p̂t − f(xt)||21/4 ≥ (1− η)2/4,

where the first inequality follows from
√
H2(p, q) ≥ ||p − q||1/2 [31,

Equation 7.20] and the second inequality follows from the proof of
Lemma 10.13. Since H2(p, q) ≥ 0 for all p, q, we have w.p. ≥ 1− δ that:

T∑
t=1

1{ŷt ̸= h∗(xt)} ≤
log |H|+ 2 log(1/δ)

(1− η)2/4 .

To prove the second part, we observe that if ŷt ≠ h∗(xt), then p̂t =
(1−η)at+ηu such that at[h∗(xt)] ≤ 1

2 . Since f∗(xt) = (1−η)eh∗(xt) +ηu,
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we have by direct computation that:

H2(p̂t, f∗(xt)) ≥
(√

(1− η)/2 + η

M
−
√

1− η + η

M

)2
∼ M(1− η)2

16 ,

where the last asymptote follows by Taylor expansion

M(η − 1)2

16 +O(
∞∑
n=3

Mn−1(1− η)n)

and the remainder term converges when 1− η ≪ 1
M .

Remark 10.6. Note that, Lemma 10.16 is the key that allows us to
reduce our mis-specified setting to the well-specified case, such as [91,
Lemma A.14], for which a reduction to the Hellinger divergence is
possible.

10.6 Extensions for Stochastically Generated Features

We have demonstrated in previous sections that the minimax risk of
our robust online classification problem can be effectively bounded for
a finite hypothesis class H and adversarially generated features xT . We
now demonstrate how this result can be generalized to infinite classes
and general stochastic feature generating processes via the notion of
stochastic sequential covering introduced in Chapter 7.2.

Infinite Classes. The following result that reduces the minimax risk
of an infinite class to the size of the stochastic sequential cover.

Theorem 10.18. Let H ⊂ YX be any hypothesis class, P be any class of
random processes over X T and K be a noise kernel that is well-separated
w.r.t. Hellinger divergence at scale γH. If there exists a finite stochastic
sequential cover G ⊂ YX ∗ ofH w.r.t. P at scale 0 and confidence δ/2 > 0,
then there exists a predictor such that for all νννT ∈ P, if xT ∼ νννT then
w.p. ≥ 1− δ over all randomness involved, the risk is upper bounded
by:

O

( log(|G|) log(4|G|/δ)
γH

)
.
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Proof. Let A be the event over xT so that ∀h ∈ H, ∃g ∈ G such that
∀t ∈ [T ], h(xt) = g(xt). Let now νννT ∈ P be the underlying true feature
generating process. We have by the definition of stochastic sequential
covering that PrxT [A] ≥ 1− δ/2. We now observe that Theorem 10.7
holds for sequential functions as well. Therefore, taking confidence
parameter δ/2, the prediction rule derived from Theorem 10.7 w.r.t.
class G yields high probability minimax risk upper bounded by:

O

( log(|G|) log(4|G|/δ)
γH

)
. (10.24)

Let h∗ ∈ H be the underlying true function, xT ∈ A be any realization
of the feature, and g∗ be the sequential covering function of h∗ at scale
0. Note that, g∗ has the same labeling as h∗ on xT . Therefore, any
predictor has the same behaviours when running on h∗ and g∗, and
thus the high probability minimax risk for H is upper bounded by that
of G. The theorem now follows by a union bound.

Note that, any bounds that we have established in the previous
sections for finite class can be extended to infinite classes; these bounds
depend only on the stochastic sequential cover size using a similar
argument as Theorem 10.18. We will not discuss all such cases in the
interest of clarity of presentation. As a demonstration, we establish the
following concrete minimax risk bounds:

Corollary 10.19. Let H ⊂ YX be a class with finite Littlestone di-
mension Ldim(H) [92] and |Y| = N . If the features are generated
adversarially, and K is any noise kernel that is well-separated w.r.t.
Hellinger divergence at scale γH. Then, the high probability minimax
risk at confidence δ is upper bounded by:

Bδ(H,K) ≤ O
(

Ldim(H)2 log2(TN) + Ldim(H) log(4TN/δ)
γH

)
.

Moreover, for the noise kernel Kη as in Theorem 10.12, the high proba-
bility minimax risk with confidence δ > 0 is upper bounded by:

Bδ(H,Kη) ≤ (Ldim(H) + 1) log(TN) + 2 log(1/δ)
(1− η)2/4 .
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Proof. The first part follows directly from Theorem 10.18 and the fact
that the sequential covering of H w.r.t. adversarial selection of X T is of
order (TN)Ldim(H)+1 by [92, Theorem 25]. The second part follows by
Theorem 10.12.

We complement this corollary with the following lower bound:

Proposition 10.5. For any d,N ∈ N and γH > 0, there exists a class
H ⊂ YX with Ldim(H) ≤ d and |Y| = N , and a kernel K with Hellinger
gap Ω(γH), such that:

r̃T (H,K) ≥ Ω
(
d logN
γH

)
.

Proof. We define Y := [N ], X := {x1, · · · ,xd}, and H := YX . It is easy
to verify that Ldim(H) = d. Let M = c logN and C ⊂ {−1,+1}2M be
a maximum packing such that ∀v1 ̸= v2 ∈ C,Ham(v1,v2) ≥ M

2 and
Ham(vi,1) = M , where Ham denotes the Hamming distance and 1 is
the all-1 vector. By [93, Thm D.1], we have |C| ≥ N for an appropriately
selected constant c. Therefore, for any y ∈ Y, we can identify a unique
vy ∈ C. We now define, for any y ∈ Y , the distribution py over Ỹ := [2M ]
such that

∀ỹ ∈ Ỹ, py[ỹ] = 1 + vy[ỹ]ϵ
2M ,

where ϵ > 0 is a small parameter to be selected. It is easy to verify that
py is indeed a probability distribution. Moreover, for all y1 ̸= y2 ∈ Y , we
have KL(py1 , py2) ≤ O(ϵ2) and H2(py1 , py2) ≥ Ω(ϵ2). The first inequality
follows from simple approximation, and the second inequality follows
from the packing property of C. We now take ϵ2 = γH and define the
kernel K(x, y) := {py}. To prove the risk lower bound, we partition
the time horizon into d blocks, each of size T/d, with the ith block
taking feature xi. By Fano’s inequality (cf. Chapter 2.4) and a similar
argument as in Theorem 10.7, we have that the expected risk is lower
bounded by Ω

(
d logN
γH

)
.

Remark 10.7. Note that in Proposition 10.5, we have a logN depen-
dency on the label set size. This contrasts with the (agnostic) noiseless
case [94], where the regret is independent of the label set size N .
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σ-Smoothed Processes. Finally, we apply our results for a large class
of distributions over X T known as σ-smoothed processes discussed in
Chapter 8. To briefly recall for any given distribution µ over X , we say
a distribution ν over X is σ-smooth w.r.t. µ if for all measurable sets
A ⊂ X , we have ν(A) ≤ µ(A)/σ. A random process νννT over X T is said
to be σ-smooth if the conditional marginal νννT (· | Xt−1) is σ-smooth
w.r.t. µ for all t ≤ T , almost surely. For instance, if σ = 1, we reduce to
the i.i.d. process case.

Corollary 10.20. Let H ⊂ YX be a class with finite VC-dimension
VC(H) and |Y| = 2, Sσ(µ) be the class of all σ-smoothed processes
w.r.t. µ, and Kη be the noise kernel as in Theorem 10.12. Then for
any νννT ∈ Sσ(µ), if xT ∼ νννT , then the high probability, minimax risk at
confidence δ > 0 is upper bounded by:

O

(VC(H) log(T/σ) + log(1/δ)
(1− η)2

)
.

Proof. By Proposition 8.4, H admits a stochastic sequential cover G at
confidence δ/2 > 0 such that:

log |G| ≤ O(VC(H) log(T/σ) + log(1/δ)).

We now condition on the event of the exact covering. By Theorem 10.12
(second part), the high probability minimax risk at confidence δ/2 is
upper bounded by:

O

( log |G|+ log(2/δ)
(1− η)2

)
≤ O

(VC(H) log(T/σ) + log(1/δ)
(1− η)2

)
.

The result now follows by a union bound.

10.7 Bibliographical Notes

Online learning with noisy labels was first studied in [95], which consid-
ers sequential prediction with binary outcomes corrupted by a Binary
Symmetric Channel (BSC). The BSC can be viewed as a special case of
the noise kernel in Example 10.1 with fixed noise parameters ηt. The
more challenging setting with varying noise parameters—corresponding
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to Massart’s noise—was investigated by [35]. Online conditional proba-
bility estimation has been extensively studied; see, for example, [46],
[54], [60], [61], [65], [74]. The approach of leveraging online conditional
density estimation (cf. Theorem 10.1) is conceptually similar to that
of [91], within the context of online decision making. Analogous ideas
of pairwise comparisons have also appeared in the differential privacy
literature—see, e.g., [96]—though only in the batch setting.

The general theoretical framework and results discussed in this
chapter are based on the work of [97].
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