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ABSTRACT

Online learning is a foundational paradigm underlying ap-
plications from recommendation systems to the continual
learning of modern Al models. Yet much of its theory centers
on either fully adversarial or purely stochastic settings. How-
ever, real-world environments typically fall between these
extremes, making classical models inadequate for describ-
ing practical behavior. This monograph develops a unified
perspective for analyzing online learning under more nu-
anced and realistic environments. We approach the problem
through the lens of universality from information theory and
extend tools such as the Shtarkov sum, covering numbers,
and packing arguments to the online setting, revealing deeper
structural connections between these two fields. Building on
this viewpoint, we characterize minimax regret for logarith-
mic and Lipschitz losses, analyze expected regret under i.i.d.
and more general stochastic processes, and study hybrid ad-
versarial-stochastic scenarios. We further develop construc-
tive algorithms that achieve near-optimal regret guarantees,
yielding a coherent and fine-grained information-theoretic
framework of online universal learning.
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Introduction

One of the central themes in information theory is the concept of uni-
versality, which refers to the design of algorithms—such as compressors,
estimators, or encoders—that perform well across a broad class of mod-
els, without prior knowledge of the specific model generating the data. A
representative example of this idea is universal source coding, initiated
by Davisson’s seminal work [1], where the goal is to design universal
compressors that achieve code lengths close to optimal for the unknown
underlying source. The difference between the achieved length and the
optimal is known as the redundancy. This fundamental concept has
inspired a rich body of research [2]-[8].

A closely related concept has been widely studied in the machine
learning (ML) community, known as online learning. In this setting,
the goal is to design a wniversal predictor that can make accurate
predictions for future observations without relying on any assumptions
about the data-generation process. The objective, as before, is to achieve
performance comparable to that of the best expert in a given class, with
the performance gap measured by the notion of regret. Indeed, the
concept of regret is closely related to redundancy, as discussed in the
seminal book by Cesa-Bianchi and Lugosi [9].

2
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Environment /Nature Class of sources

y" = A{y, -y} =1{h
infpeslog1/Pi(y")
Prob. Assignment | log1/Q(y") RTodun.dancy: .
log 1/Q(y7) log1/Q(y") — jnf log1/Fi(y")

Figure 1.1: A general universal source coding paradigm

Our current exposition is centered on the unifying principle of
unsversality in online learning. We view the online learning problem
through an information-theoretic lens, connecting classical ideas from
universal coding with modern notions of regret minimization. In doing
so, we build a unified theoretical framework that models a wide range of
learning settings, including adversarial, stochastic, and hybrid scenarios
within a common regret-based formalism.

1.1 Information Theory versus Online Learning

Perhaps the closest counterpart to online learning in information theory
is the problem of universal source coding (see also Figure 1.1). In this
setting, the goal is to find or learn the best (i.e., shortest) description
of a sequence generated by a source from a class of sources §. Since the
seminal paper by Davisson [1], the quality of universal compression has
been measured by various forms of minimax redundancy, defined as the
excess of the actual compression length over the optimal one, either on
average or in the worst case.

Formally, for a given source P (i.e., a probability distribution) and a
(label) sequence y* := (y1,...,yr), the pointwise redundancy Ry (P;yT)
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and the average redundancy Ry (P) are defined as
1
Rr(P;y") = L(y") +10g 5
) ) P(y")
Ry (P) =Eyr p[Rr(Piy")),
where L(y”) is the coding length assigned to 3’ by a compression
algorithm, often taken to be

Liy") = —1ogQy"),

for some (universal) distribution @ that approximates P. Often, we do
not know P exactly, but only that it belongs to a class of sources S.
Following [1], the average and worst-case minimax redundancies are

defined as (cf. [2], [7], [8]):

rr(S) =minsup E,r_p [ log Q(y") + log sup P(yT)] ,
Q pes PeS

7(S) = minmax | —log Q(yT) + log sup P(y1)| .
Q@ T Pes

The central question is how these different redundancies relate for
various classes of sources S. In [2], it is proved that if the maximum
likelihood distribution belongs to the convex hull of S, then

r7(8) = rr(S) = O(er(S)),

where
sup P(y")
cr(S) = Py 1o bes
7(S) ET: (y")log BT

It is also shown that
rp(S) = 77(S) + O(1),

provided the maximum likelihood distribution lies in the convex hull
of S—for example, when S consists of finite-memory (e.g., Markov)
sources. Furthermore, it is known (cf. [2]-[8]) that for a broad class of
sources, the redundancy grows as
m—1
2

logT when the alphabet size m is fixed,
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and as
-1
m— 2y
2

og(T/m) when m = o(T),

(see also [3], [5], [10]).

Experts H
H=4{h:X—=)V}

Algorithm: 9" o Re“gret‘: -
i = on(x,yh) L(gsy") — jnf L(h(x7),y")

Figure 1.2: Illustration to online learning

Online Learning. We now focus on the online learning paradigm,
illustrated in Figure 1.2, which can be formulated as a game between
nature (or the environment) and a learner (or predictor). Broadly,
the learner’s objective is to use past observations to predict the next
outcome in nature’s labeling sequence. At each time step ¢t € N, the
learner receives a d-dimensional input x; € X. Based on the current and
past observations, it outputs a prediction ; = ®;(y'~!,x?), where ®;
denotes the learner’s strategy at round t—a function of the past labels
y'~! = (y1,...,1_1) and the current input sequence x! = (x1,...,%¢).
After the prediction is made, nature reveals the true label y; € Y,
and the learner incurs a loss determined by a predefined loss function
0:YxY — R, where Y and Y denote the prediction and label spaces,
respectively.

The central objective of online learning is to design algorithms that
minimize the regret. Formally, given a learner ®; for each ¢ > 0, and a
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sequence of data (y;,x;)_;, the pointwise regret is defined as
T T

R((I)TayTvH | XT) = Zg(gtayt) — inf Zé(h’(xt)ayt%
t=1 herti 3

where §; = ®;(y'~!,x!) is the learner’s prediction at time ¢, and H C A%
is a class of experts (or hypotheses).

Similar to the average/worst-case redundancy dichotomy in universal
source coding, there are various ways to define the notion of minimazx
regret, depending on how the data are generated.

Fixed Design: This point of view studies the minimal regret for the
worst realization of the label sequence y” when the feature sequence x’
is known in advance. Let ®;, for ¢ > 0, denote the predictor’s strategy.
Then, the fixed design minimaz regret is defined as

regi(H | x") = infsup R(®T, y", H | xT). (1.1)
yT
Furthermore, the fixed design mazimal minimax regret is given by
regi(H) := supinf sup R(®T,yT, H | xT). (1.2)
xT ©T o1

It is not hard to show that the fized design minimax regret coincides
with the (worst-case) minimaz redundancy, when the loss function ¢ is
the logarithmic loss (cf. Chapter 5).

Sequential Design: In this formulation, the optimization over regret is

performed sequentially at each time step ¢, without prior knowledge of
the entire feature sequence x’. The sequential minimaz regret is defined
as

regr(#H) := supinf sup - - - sup inf sup R, o7, 1 | xT). (1.3)

X1 Y1 oy XT Y1 yr

In fact, the sequential minimax regret can be equivalently expressed as
(cf. Chapter 4)

regr(H) = inf sup R(®T,y", H | xT).
T w1 T

Stochastic Design: Another important paradigm, analogous to the average-

case minimax redundancy, arises when the data are generated by a
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stochastic (but unknown) source. In this setting, Nature selects an un-

T

known distribution vT over XT—that is, a random process—and samples

T = (x1,...,%x7) ~vT. At each time step t < T, Nature re-
t—l)

a sequence X
veals x; to the predictor, who then makes a prediction §; = ®;(x!,y
potentially using the history of inputs x* = (x1,...,%;) and past labels
y*=1 = (y1,...,y_1). After the prediction is made, Nature reveals the
true label y;, and the predictor incurs a loss (9, y:). The expected

worst-case regret is then defined as

7egr(H, P) = inf sup Eyr_,r [sup R(®T, 4T H | xT)|, (1.4)
T ,rep yT

where H is a class of predictors, P is a family of distributions over X7

In fact, the expected worst-case regret subsumes both the fixed design
and sequential minimax regret by selecting an appropriate distribution
class P. This unifying viewpoint will serve as the central theme of the
monograph. The main question we aim to address is how the complexity
and structure of both the expert class H and the distribution class P
influence the performance of online learning systems.

Outline. In Chapter 2, we summarize several useful tools that will
be used throughout the monograph. Chapter 3 introduces preliminary
results and foundational concepts in machine learning, such as Skolem-
ization, Fano’s inequality, and Le Cam’s two-point method. In Chapter 4,
we formally define both minimax regret and average regret, and present
two important technical results that recur throughout the monograph:
the Switch Lemma and the Shtarkov sum.

The next six chapters present novel contributions to online learning.
Chapter 5 begins with the analysis of minimax regret under logarithmic
loss. Chapter 6 extends the analysis to the case of Lipschitz loss functions.
Chapter 7 is devoted to the expected regret when features are generated
by an i.i.d. random process, while Chapter 8 studies the behavior
of expected minimax regret under general, unknown data-generating
processes. In Chapter 9, we shift focus to algorithm design, presenting
efficient online learning algorithms that closely approximate the optimal
minimax regret. Finally, Chapter 10 provides a detailed analysis of the
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minimax regret in the presence of label noise, where the learner only
observes corrupted labels.

1.2 Bibliographical Notes

A substantial body of literature on general machine learning has been
developed, as exemplified by the excellent textbooks [11]-[14]. Online
learning, in particular, is discussed in the seminal book by Cesa-Bianchi
and Lugosi [9]. We also refer the reader to [15], [16] for a more modern
viewpoint on the online convex optimization (OCO) framework. Our
treatment of universal online learning for general data generation pro-
cesses is largely inspired by universal source coding in the information
theory community, which can be traced back to the seminal works
of [1], [17], and [18]. Rissanen et al. [4] highlight the connection between
universal coding and universal modeling and learning. The last two
decades have witnessed a resurgence of interest in redundancy rates for
lossless coding [2], [6]-[8], [19], as well as in related work such as [5],
[20]-[23]. We shall discuss some of these references in more detail in the
following chapters. Some of them address finite alphabets, while oth-
ers—such as [5], [20]-[22]—consider unbounded alphabets or alphabets
with additional structural properties, such as monotonicity constraints.
The material presented in this exposition is primarily based on the
authors’ own works, which will be discussed in detail in subsequent
sections. In Section 4, we will also briefly discuss the works of [23]—-
[26], which provide a general treatment of online learning through
the concept of sequential Rademacher complexity. We refer the reader
to these original papers for a more comprehensive exposition. The
hybrid online learning setting discussed in this monograph has recently
attracted considerable attention, notably in the smoothed adversarial
framework introduced by [27]-[29]. We also note that the learning-
augmented framework proposed in recent work [30] provides a different
perspective on the “hybrid” setting through a prediction oracle.
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Useful Tools

In this chapter, we describe some useful results and tools that will be
used throughout this exposition. We start with Bregman divergence
and exp-convexity. We then summarize VC-dimension and the fat-
shattering number. Skolemization is a useful tool discussed in this
chapter. Following the description of minimax expressions, we recall
Fano inequality and discuss Le Cam two point methods. We conclude
this section with some large deviation inequalities.

2.1 Bregman Divergence and Exp-concavity.

Let D(Y) be the set of probability distributions over some (finite) set
Y of size M. A function L : D(Y) x D(Y) — RZ0 is referred to as a
divergence. We say a divergence L is a Bregman divergence if there exists

a strictly convex function F': D()) — R such that for any p,q € D()),

L(p,q) = F(p) — F(q) — (p — q) 'VF(q).

Note that both KL-divergence KL(p,q) = Ygey ply] log Zq’% and the
L2-divergence L%(p, q) = ||p — q||3 are Bregman divergences [9, Chapter
11.2].

We now present some properties of Bregman divergence.

9
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Proposition 2.1. Let P be a random variable over D(Y) (i.e., a random
variable with values in RM) and L be a Bregman divergence. Then for

any qi,q2 € D(Y)

Epnp[L(p, q1) = L(p, 42)] = L(Ep~p[pl 1) — L(Ep~r(p], ¢2)-

Proof. By definition of Bregman divergence, we have

L(p,q1) — L(p, q2) =F(q2) = F(q1) — p" (VF(q1) — VF(g2))
+q VF(q1) — a3 VF(qa).

Note that the above expression is a linear function w.r.t. p. Therefore,
by taking expectation over p ~ P and using linearity of expectation,
one can verify the claimed identity holds. O

A function ¢ : D(jﬂ) x Y — R20 is referred to as a loss function. For
instance, the log-loss is defined as

0% (p, §) = KL(eg, p) = — log p[{],

and the Brier loss is defined as
(p, ) = lleg — pll3,

where ey is the probability distribution assigning mass 1 to §. We say a
loss ¢ is a-exp-concave if for any § € Y, the function p — e~ @9 ig
concave with respect to p for some o € RZ0.

Proposition 2.2. The log-loss is 1-exp-concave and the Brier loss is
1/4-exp-concave.

Proof. The 1-exp-concavity of the log-loss can be verified directly. To
prove the 1/4-exp-concavity of the Brier loss, we use the characterization
from [16, Lemma 4.2], which states that a function f is a-exp-concave
if and only if:

aVip)Vip)'" =V (p).

Let ¢ € D(Y), and define f(p) = ||p — ¢||3. Then Vf(p) = 2(p — ¢q) and
V2f(p) = 21, where I is the identity matrix. For any u € RM | we have:

1
2lw2p - a))* < |lull3llp — gll3 < 2ull3 = 2" Iu,



2.2. VC and Fat-Shattering Dimensions 11

where the first inequality follows from Cauchy—Schwarz, and the second
inequality follows from:

lp—qll3 = > (plgl—ali)?* < > max{p[g], q[7]}* < > pli*+al7)* < 2,
GEY GEY ey

since p,q € D()). This completes the proof. O

2.2 VC and Fat-Shattering Dimensions

For completeness, we recall the definition of the VC-dimension. Let
H C {0,1}* be a class of functions mapping a set X into {0,1}. The
VC-dimension of H, denoted by VC(H ), is defined as the largest integer
d > 1 for which there exists a sequence x% = (x,...,x4) € X% such that,
for every y% = (y1,...,yq) € {0,1}%, there exists an h € H satisfying
h(x¢) = y; for all t € [d]. An equivalent and often more generalizable
formulation is based on the notion of shattering. We say that H shatters
x4 € X4 if, for every subset I C [d], there exists h € H such that
h(x;) =1 for all t € I and h(x;) =0 for all t ¢ I. The VC-dimension of
H is then the largest d for which some x? is shattered by #.

The following combinatorial result characterizes the growth of finite
VC-dimension classes:

Lemma 2.1 (Sauer's Lemma). Let H C {0,1}* be a class of binary-

valued functions with VC-dimension d. Then, for any sequence x! =

(x1,...,x7) € XT, we have:

d (T
[{(h(x1),...,h(x1)) : h e H}| <> <Z>
1=0

Proof. We proceed by induction on T and d. For T' = 0 or d = 0,
the result holds trivially. Fix x” € XT. For each h € H, let h|7_; =
(h(x1),...,h(x7-1)), and define:

Ag = {h|T_1 : h(XT) =0, he H},
A = {h’T—l : h(XT) =1,he 7‘[}

Denote H(xT) := {(h(x1),...,h(x7)) : h € H}, we have:
[H(T)| = Aol + |A1| = [Ao U A] + Ao N Aul.
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Note that Ay U A; is the set of all labelings of the first T—1 inputs
realized by H, so VC(Ag U Ay) < d. Moreover, Ay N A; corresponds
to functions in H that agree on the first T—1 inputs and differ only
on x7. If Ag N Ay were to shatter a set of size d among the first T—1
inputs, then H would shatter d 4+ 1 points (including xr), contradicting
VC(H) < d. Hence, VC(Ap N A1) < d — 1. By the inductive hypothesis,
we conclude

w7 E () £0)

=0 i=0

where the final equality follows by the identity (7;) = (ThH+ (1. O

7 1—1

The definition of the VC-dimension can be generalized to real-valued
functions as well. This leads to the notion of the fat-shattering dimension,
which can be viewed as a scale-sensitive version of the VC-dimension.
For any class H C [0,1]%, we say that H a-fat shatters x? € X% if there
exists a vector s? € [0, 1]¢ such that for every subset I C [d], there exists
a function h € H satisfying, for all ¢ € [d]:

o Ift €I, then h(xt) > s; + «; and
o Ift ¢ 1, then h(x;) < st — .

The fat-shattering dimension of H at scale « is defined as the largest
integer d := d(a) such that there exists x? € X' that is a-fat shattered
by H (see Figure 2.1). The special case of the fat-shattering dimension
with o = 0 is also referred to as the pseudo-dimension. Observe that the
O-fat-shattering dimension, with s; = 1/2, reduces to the VC-dimension
for binary-valued functions.

2.3 Minimax Inequalities and Skolemization

In this exposition, we often deal with expressions of the following form
inf, sup,, f(r,y) for some function f(z,y). On many occasions we need
to know its relation to sup, inf, f(x,y). So let us deal first with the so
called minimazx inequality which claims that

inf > sup inf 2.1
l}ngggf(w,y)_Slelgxngf(%y) (2.1)
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X; X, X3 Xy

Figure 2.1: Illustration of the fat-shattering dimension

for any compact X and Y. Indeed, observe that for every x € X and
y € Y we have

sup f(z,y") > f(z,y).
y'ey

Taking inf over X we arrive at

xlg)fcysgp fla,y') > Inf f(z,y)

which holds for all y € Y, thus sup over Y can safely be appended
giving
inf sup f(z,y’) > sup 1nf f(z,y)
z€X yey yey €
proving (2.1).
We also notice that for any functions f and ¢

sup (f(z) +g(z)) < sup flz) + Sgpg(:c)- (2.2)

Finally, we deal with an important tool known as skolemization which
is usually used in logic but we adapt it to our context. Thoralf Albert
Skolem was a Norwegian mathematician who worked in mathematical
logic and showed how to eliminate existential quantifiers from logical
formulas.

Lemma 2.2 (Skolemization). Let A, B be two sets, and F': A x B —- R
be an arbitrary function, then

sup inf F(a,b) = inf sup F(g(b),b),
beB acA (a.0) gégbeg (9(6).0)

where G := AP is the class of all functions from B — A.
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Proof. Define §(b) := arginf,c 4 F'(a,b) we have

supinf F'(a,b) = sup F(§(b),b) > ir;f sup F'(g(b),b).
b @ b b

Moreover, let g* := argmingeg(sup, F'(g(b), b)) we have
irglf sup F'(g(b),b) = sup F(g*(b),b) > sup i%f F(a,b).
b b b

Therefore, all inequalities become equality and the result follows. [

Minimax Theorem. We finish this section with a formulation of von
Neumann minimax theorem which is used later to prove the so called
minimax switching trick that allows us to express some minimax formu-
lations via the average over some distributions.

We start with the Minimax Theorem that we present without a
proof, see [9, Theorem 7.1].

Theorem 2.3 (Minimax Theorem). Let f : A x B — R be a bounded
real-valued function, where both A and B are convex sets and A is
compact. If f(-,b) is convex and continuous on A for any b € B, and
f(a,-) is concave on B for any a € A, then

inf sup f(a,b) = sup 1nf f(a,b).
acApeB beB a€A

This theorem is stronger than von Neumann’s minimax theorem,
which specifically considers the case when f is a bi-linear function.
It differs slightly from Sion’s minimax theorem, which requires only
semi-continuity and quasi-convexity (-concavity).

We complete this section with a useful trick, called the minimax
switching trick that we shall use throughout this exposition when
dealing with minimax regrets. Here, we write A(B) to denote a set of
distributions over B.

Theorem 2.4 (Minimax Switching Trick). Let A be a convex set, B be a
set such that A(B) is compact, and let f: A x B — R be a bounded
function such that f(-,b) is convex for all b € B. Then:

mf sup f(a,b) = sup inf By, [f(a,b)].
a€ApeB HEA(B) a€A
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Proof. Note that:

inf sup f(a,b) = inf sup Eu,|f(a,d)].

a€ApeB ( ) aEA,uEA(B) b ,u[ ( )]
Denote F(a,pu) = Eyu[f(a,b)]. We have F(-,uu) is convex over A,
and F(a,-) is linear (therefore concave) over A(B). By the Minimax
Theorem 2.3 we conclude:

inf sup F(a,u) = sup inf F(a,p
aGA,u,GA(B) ( ) ;LEA(B)QEA ( )

and this completes the proof. O

2.4 Fano Inequality and Le Cam Two Point method

We often use terminology and methods of estimation in this paper. Fano
inequality and Le Cam two-point methods are the most useful tools in
this area that help us simplify our proofs.

Fano Inequality. Assume that X is a random variable with finite
outcome X. Furthermore, X = g(Y) is the predicted value of X after
seeing Y, which is also defined over X'. We write H(X) and H(X|Y) for
the entropy of X and conditional entropy of X under Y, respectively.
Throughout we assume that ¢ is a deterministic function. Then Fano
inequality states

5 H(X|Y)-1
=PX#X)> ————— 2.3
or more strongly
H(Ber(pe)) + pelog(|X]| —1) = H(X[Y) (2.4)
where Ber(p) is the Bernoulli random variable E with P(E = 1) = p..
To see this, let E = 1if X # X and 0 otherwise, that is, P(E = 1) = p

We now write H(E, X|Y) in two different ways:

H(E,X|Y)=H(X|Y)+ H(E|X,Y)
H(E,X|Y) = H(E|Y)+ H(X|E,Y).
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Since H(E|X,Y) = 0, after comparing both sides of the above, and
noting that for any X and Y, H(X) > H(X|Y) we conclude that

H(X|Y) < H(Ber(p.)) + H(X|E,Y)
and
HX|E,)Y)=H(X|E=0,Y)P(E=0)+ HX|E=1,Y)P(E =1).

But H(X|E = 0,Y) = 0 and H(X|E = 1,Y) < log(]X| — 1) since
when E = 1, the random variable X can take only |X| — 1 values. This
completes the derivation of (2.4).

Using the fact H(X|Y) = H(X) — I(X;Y) and assuming X is
uniform over X, we obtain the following useful form from (2.3)

(G SR S !X\xez;f = 25)
Pe = log|X| — log | X] ’ ’

Here, we used the following fact (for X uniform over X):

’ Z KL(Py | x=|Py)
a:e?(

Z KL(Py|x=[lQ) — KL(Py[IQ)

| xEX
| Z KL(Py|x=1Q)
zeX
where @) is any distribution over X and KL is the Kullback—Leibler
divergence.

I(X;Y):=

Le Cam Two Point Method. We are again in the realm of estimation
and let X be drawn from distribution Py parametrized by 6 € ©. For a
given loss function £(6,6) with 6 being an estimation of 6, the average
minimax risk can be defined as follows:
R,(©) = infsup Ex£(6,6(X)) > inf sup Ex/(6,0(X))
6 0eo 0 0€{00,01}

where 6y, 01 € O are any two sources from O.

We now state the Le Cam method in its generality, but we derive it
only for the indicator function loss.
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Lemma 2.5 (Le Cam Method). Let the positive loss function ¢(6, 6)
satisfy a-triangle inequality

(60, 61) < [€(00o,0) + £(61,0)]
for all 6,6p,60, € © and some « > 0. Then

(60,0
inf sup Ex£(0,0(X)) > sup Mu —TV(Pyy, Ps,)  (26)
6 0cO 9079166 (64

where TV is the total variation distance.

The proof can be found in [31], so here we only sketch the derivation
for the case when the loss function is just the indicator function, that
is, £(0p,61) = 1{6y # 0:1}. For simplicity, we denote y,6; as 0,1,
respectively, and write Py and P; for Py, and Fp,. Then, we observe

inf sup Py(d #0) > % ) (PO(H £0)+ Py(0 # 1))
0 0e{0,1} 0

But it is easy to observe that
inf (Py(0 #0) + P (6 #1)) = 1= TV(R, P1).
0

Thus combining the last two assertions we obtain the following expres-
sion for the Le Cam method.

Lemma 2.6. The following holds
1 1 1
inf su Py(0 9>7—7TVP,P — — ————\/KL(FP|| P
5 ae{[)pl} 9( # ) 2 ( 0 1) 2 \/W ( OH 1)
(2.7)

where the last inequality follows from Pinsker’s inequality.

For any distributions Py, P, the Pinsker’s inequality states (see [31]):

TV(Po, P1) < \JKL(Po[|P1)/(2loge). (2.8)

2.5 Martingale Concentration Inequalities

We present some standard concentration results for Martingales, which
will be useful for deriving high probability guarantees. We refer to [32,
Chapter 13.1] for the proofs.
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Lemma 2.7 (Azuma's Inequality). Let Xi,---, X7 be an arbitrary ran-
dom process adapted to some filtration {F; }+<7 such that | X;| < M for
all t <T. Let Y; = E[X; | F;_1] be the conditional expected random
variable of X;. Then for all § > 0, we have:

Pr ET: ET: X+ M\/(T/2)1log(1/)| > 1 -1,
Lt=1 t=1

and

Pr ZYt > ZXt (T/2)log(1/8)| > 1 — 6.

Lt=1 i

The following lemma provides a tighter concentration when X; > 0,
which can be viewed as a Martingale version of the multiplicative
Chernoff bound.

Lemma 2.8 ([32, Theorem 13.5]). Let Xi,---, X7 be an arbitrary
random process adapted to some filtration {F; };<7 such that 0 < X; <
M for all t <T. Let Y; = E[X; | Fi—1] be the conditional expectation
of X;. Then for all § > 0 we have:

T T
Pr [Zyt <2> X;+2Mlog(1/6)| > 14,

t=1 t=1

and

Pr lth ZXt (M/2) log(l/é)] >1-06.
t=1

Proof. Applying Zhang [32, Thm 13.5] with & = X;/M and A =1 in
the theorem. O

Remark 2.1. It should be noted that the assumption X; > 0 is required
for Lemma 2.8 to hold. To see this, we group X7 as X;Xo, X3Xy, -
such that X9 1 is uniform over {—1,1} and Xy = —Xy for all
t € [T]. It is easy to verify that X; 4+ -+ + X7 = 0 almost surely. But
Yo: 1 = 0 and Yo = —X9;_1, hence, we have Y7 + --- 4+ Yp is sum of
T'/2 independent uniform distributions over {—1,1}. Therefore, by the
central limit theorem Y] + - -- 4 Y7 > Q(+/T) with constant probability.
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The following lemmas provide tighter bounds for general (not nec-
essarily non-negative) processes by leveraging higher-order moment
information.

Lemma 2.9 ([32, Theorem 13.2]). Let Xi,---, X7 be a random pro-
cess adapted to some filtration {F;};<7, and E; be the conditional
expectation on F;_1. Then, for any «,d > 0 we have:

T T
Pr |- ZlogEt[e_"‘Xf] < aZXt +log(1/6)| >1—0.
t—1 t=1

Lemma 2.10 (Freedman's inequality). Let X7,..., X7 be a martingale
difference sequence adapted to a filtration {F:}i<r, that is, E[X; |
Fi—1] = 0 for all t < T'. Assume |X;| < M almost surely. Define the
partial sums

t
St:ZXj fOI’t:L...,T,
j=1

and the sum of conditional variances

T

Vi = Y EX? | Foal

t=1

Then for any u,v > 0,
2

2 <0l < v
Pr LrgtaSXT Sy >wu and Vi < v} < exp ( IO Mu/3)> . (2.9)

and therefore,
Pr L%&EE{T Sy > V2vu 4 (V2/3)Mu and Vi < U] <e "
Proof. See [9, Lemma A.8] or the original proof of Freedman [33]. [

Note that Lemma 2.10 is also sometimes referred to as Bernstein’s
inequality for martingales (see also Lemma 2.12 below).

We finish this discussion by quoting Hoeffding’s Lemma which is
used in many places of this exposition.
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Lemma 2.11 (Hoeffding's Lemma). Let X be a random variable with
a < X <b. Then for any s € R, we have

52(b — a)?

InE[e*X] < sE[X] + 3

Proof. Note that InE[e*X] = sE[X] + InE[e*X~EXD] so we only need
to consider the case where E[X] = 0. Observe that for all a < z < b,

we have
r—a o5 b—x

i —— b—a
by Jensen’s inequality and the convexity of e** over z. Taking expec-
tation over & ~ X on both sides and using E[X] = 0, the right-hand
side can be expressed as a function of s. The lemma follows by Taylor
expansion of this function up to the second order. O

ST

Another version of Hoeffding’s Lemma is the Bernstein’s inequality
that we formulate next.

Lemma 2.12. Let X be a random variable taking values in [0, 1]. Then
for any s € R
InE[e**] < (ef — 1)E[X].

We conclude this chapter with a classical inequality from probability
theory, known as Khinchine’s inequality [34].

Lemma 2.13 (Khinchine's inequality). Let aq,...,ar € R, and let € =
(€1,...,er) be a random vector uniformly distributed over {—1,+1}7.

Then
T
< Z atz.
t=1
Proof. By Jensen’s inequality, we have

S ()

since ¢; are independent Rademacher variables. The upper bound follows.

T
D> et
t=1

1 T
—|> a2 <E
\/i t:1t— ‘

E
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We give a short proof of the lower bound with a suboptimal constant
1/4/3 from [9, Lemma A.9]. Let X := "7 | a4¢;. By Holder’s inequality,
for any bounded random variable X,

E[X?] = E[|IX|*?1X ] < (E[X*)3 (B[ XD,

Letting X = Zthl az€¢, we obtain

3/2
(23:1 a%) (@) 1 I
> > ai,

12 = /3
(Z?ﬂ ag + 3% @?%2) V3N

where (a) follows from Y-, af +33,,; a7a3 <3 (3, af)2 . O

Remark 2.2. The upper bound in Lemma 2.13 holds even when each
coefficient a; is a function of past signs, i.e., a; = ¢¢(e1,..., 1) for
some measurable function ¢;. In this case,

T T
Z arer] < 4| Ee [Z a%] .
t=1 t=1

However, the lower bound does not generally hold in this adaptive
setting; see [34, Section 6].

Ee

2.6 Bibliographical Notes

Most of the tools discussed in this chapter can be found in books such
as [31], [11] and [35]. The minimax switching lemma is from [25], [36].
The large deviations results can be found in [32]. Khinchine inequality
and its generalization can be found in [34].
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Preliminary Results

In this Chapter we introduce basic concepts of online learning, and
present some general simple predictors such as Consistent Predictor and
Halving Predictor. Then, for the agnostic case, we discuss a popular
algorithm known as the Exponential Weighted Average (EWA) Algorithm
that we use often in our exposition.

3.1 Basic Concepts in Online learning

Let X denote the feature (or instance) space and ) the label space. A
concept is a function ¢ : X — ) representing the true labeling rule. The
set of all possible such functions under consideration is called the concept
class, denoted C € Y. A hypothesis is a function h : X — ) that a
learning algorithm may output, and the set of candidate hypotheses
it can choose from is the hypothesis class, denoted H C Y¥. We say
the learning problem is realizable if C C H; that is, the true concept
lies within the hypothesis class. Conversely, the problem is agnostic
when no assumptions are made about the concept class, i.e., C := Y%,
There can be intermediate cases between the realizable and agnostic
settings. However, in this paper, we focus primarily on the realizable vs.
agnostic dichotomy, and thus do not explicitly refer to the concept class

22
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in subsequent discussions. Instead, we concentrate on the properties
and implications of different hypothesis classes. Finally, we sometimes
allow the output of the learner ® to lie outside the hypothesis class
‘H—a setting known as improper learning. If the output of ® is always
within H, we refer to it as proper learning.

We now define our basic game of online learning.
Fort=1,2,.---,T:

1. Nature/Environment presents an instance x; € X

\V)

. Learner predicts a label g, € Y
3. Nature reveals true label y; € Y
4. Learner suffers loss ¢(9¢,y¢), for certain function £: )Y x Y — R

The objective is to find a learning rule ® that minimizes the risk

T
riskp (@) ==Y L(Ge, ye)- (3.1)

t=1

We first prove an old result by Thomas M. Cover from 1965 showing
that without any assumption the risk can grow as 7. Indeed, take
Y :={0,1} and let £(g,y) := 1{§ # y}. Then, riskp(®) reduces to the
number of mistakes made by ® to predict the y;’s. Let ® be any learning
rule. Consider the following simple strategy for Nature:

e At each time step t, after the learner makes the prediction g,
Nature adversarially chooses y; € ) such that y; # ¥.

The number of mistakes made by the learner equals T, i.e., the learner
errs at every step.

Corollary 3.1 (Cover, 1965). Any learning rule ® cannot achieve a
mistake bound better than T'.

This sounds uninteresting, so what is the catch? Observe that we
did mot use any prior knowledge about the learning target.
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3.2 Incorporating Prior Knowledge: Realizable Case

Let H := {h1,--- ,hx} C V¥ be a hypothesis class, and assume that
Nature’s strategy is realizable, i.e., there exists an h € H such that for
all t < T we have h(x) = y;.

We now introduce the first, not very efficient, learning algorithm
called the consistent predictor.

1. At each time step ¢, find any consistent hypothesis h; € H (which
must exist due to realizability) such that:

t—1

> 1hu(xi) # it = 0.
=1

2. Make the prediction: §; = ﬁt(xt).

The question is how many mistakes will we make? Notice that each
mistake will eliminate at least one function from H, so the total number
of mistakes is upper bounded by |H|. Actually, we can prove that it is
also a lower bound.

Lower Bound on Consistent Predictor. Consider the following hypothesis
class:

X1 X2 X3 X4

hp 0 0 0 O
hy 1 0 0 O
hp 0 1 0 O
hsy 0 0 1 0

0 0 0 1

ha

Assume that hg is the ground truth predictor. At each time step
t, both h; and hg are consistent with the prior data. Consider now a
consistent predictor that always selects h; to make predictions at step t,
which will incur at least |H| mistakes. Thus, in the worst-case scenario,
a consistent predictor cannot achieve a mistake bound better than |#|.
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It turns out we can use a smarter way to eliminate inconsistent
hypotheses via the so-called halving predictor.

1. Maintain a running hypothesis class H® with H(©) =%

2. At each time step ¢, after receiving x;, we define for y € {0, 1}

HP = {h e 1™V h(x,) =y}

3. Predict §; = arg maxye{gyl}ﬂ/ﬂét)h \Hgt”}

4. Let y; be true label, update H®) = 7-[3(,?

Every time a mistake happens (i.e., J; # v;), we have |H®)| < |[H#t-D|/2.

Thus, total number of mistakes is upper bounded by log |H| (an expo-
nential improvement over the |#| lower bound!).

3.3 Incorporating Prior Knowledge: Agnostic Case

Both the consistent and halving predictors rely heavily on the assump-
tion that the data is realizable, i.e., there exists h € H that is consistent
with all the data. A single mismatch between the true data and the best
hypothesis in ‘H will cause both predictors to catastrophically fail. So
the question is whether we can develop an algorithm that is robust to
potential noise? To do so we need to recognize that an absolute mistake
bound is not very informative and we must instead consider guarantees
relative to the minimal mistakes achievable by a hypothesis in H. This
leads to the definition of regret, one of the most important notations on
machine learning that we shall use throughout this paper.
Let

T
My = > g # wi} (3:2)

t=1

T
Mi = jul, 57 1{hx0) # 1) (3.3)
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where M\T measures the number of mistakes made by a predictor ®,
and M7 measures the minimal number of mistakes achievable by any
hypothesis in . Then we define the a-agnostic regret for o > 0 as

reggl)(@, H) := My — aM}. (3.4)

Let H :={hy, -+ ,hi} be any finite hypothesis class of size K. We
now introduce Algorithm 3.1 known as the exponential weights predictor.
This algorithm is one of the most commonly used in the field.

Algorithm 3.1 Exponential Weighted Average (EWA) Algorithm

—_

. Maintain a weight vector w(*) € RX  initially w(® = (1,--- ,1).
:fort=1,---,T do
After receiving x;, compute the weighted average:

W N

K (t—1)

. wy,
= —E——hi(xy).
Pl By wi(f Y

4: Predict g, = 1{p; > %}, i.e., we predict the weighted-majority.
(t)

5: After receiving y;, update the weight w,;~ as follows:
w(t) . w}(:_l), if hk(xt) = Y,
k — .
(1 - 77) w]E;t 1)7 if hk(xt) ?é Yt,
where n < 1 is a tunable parameter.
6: end for

We now prove the following result regarding the regret.
Theorem 3.2. Regardless of how Nature generates the data, the (deter-

ministic) EWA algorithm @ enjoys the following mistake bound:

2In(|H|)

My < 2(1+n)Mj + (3.5)

hence the 2-agnostic regret is

reg?) (@, H) < O(,/ M log [H)). (3.6)
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Proof. For any time step t, we define the potential:
K

WO =3 w" with WO = K.
k=1

Let
It = {k‘ € [K] : hk(Xt) = yt}; Jt = [K] \It

If the prediction at time ¢ is incorrect, i.e., §j; # y¢, then by the weighted
majority prediction:

Z wl(gtfl) > Z wl(;fl)'
keJ; kel

Hence, for each time step t where a mistake occurs, the potential
satisfies:

k=1
= (=) Y w3
ke, kel
A B
@ /1—-n 1 N
2 (1=n <t—1>:( ) (t-1)
_( . +2)W 1- 2w,

where step (a) uses the facts that A+ B =W A > B and1—-7 < 1.
Applying this inequality over all time steps t = 1,...,T, we obtain:

i i
(1—n)M?§W<T)§W@><1—;7> TSK-(I—;/) "

where M7 is the number of mistakes by the best expert, and ]\/ZT is the
number of mistakes made by the algorithm.
Taking natural logarithms of both sides and using;:

1
In(1 —n)>-n—n* and 1n<1—g>§—2 forn<§,

we complete the proof of (3.5). To obtain (3.6) we put optimal n =

\/InH /M7 to complete the proof. ]
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Thus far, we have obtained a regret bound for a = 2, and the natural
question is whether it can be improved to o = 1. It turns out that for
deterministic predictors, this is not possible. To see why, consider the
hypothesis class H = {ho, h1}, where each hy(x) = b for all x € X and
b € {0, 1}. Following Cover’s construction, any deterministic predictor
can be forced to make T mistakes, while the best hypothesis in hindsight
incurs at most 7'/2 mistakes. Therefore, no deterministic predictor can
achieve sublinear regret when a = 1.

Nevertheless, we can show that sublinear regret with a = 1 is
achievable by using the randomized Exponentially Weighted Average
(EWA) algorithm, as described below.

Algorithm 3.2 Randomized Exponentially Weighted Average (REWA)

1: Initialize: Set weights w(®) = (1,...,1) € RX.
2: for each round t =1,2,...,7 do

(t—1)
3. Define distribution p[k] = % for all k € [K].

. Zj:l J
4: Sample k¢ ~ py and predict g := hy, (x¢).
Update weights:

wy) = wl ™Y - exp (=0 Whe(xe) # wi) s Vh € K],

where 1 < 1 is a tunable learning rate.
6: end for

With this predictor in mind, we can prove the following stronger
results on a = 1 regret.

Theorem 3.3. Regardless of how Nature generates the data, as long as
the selection is independent to the internal randomness of the predictor,
we have
T
. In(|H T
Egr [Z Hge # yt}l < Mrp + In([#]) + %
t=1

leading to

reg ) (D, 1) < O(,/Tlog |H]). (3.7)
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Proof. We again define the potential W) = Zk 1 wk) Observe that:

(t)
1W_Z

e —n1{hg(xt) 7yt }

K (t—l) 2
Z —y Hhw(xe) 7y} + <

I/\@

—~
=

2
X n
= —nEqg, [1{9: # ye}] + 5

where (a) follows by Hoeffding’s Lemma [9, Lemma A.1] (see also
Lemma 2.11) and (b) follows from the definition of ;. Summing from
t=1to T, we get:

T 2
. N n-T
—nM; <In W < —pEgr [} g #ud| + 5 tinlH|

The regret bound follows by rearranging the inequality. The formula
for the regret follows from it by selecting optimal 7. O

3.3.1 General Losses

We complete this section with the EWA algorithm for general losses.
Let Y = [0,1] and H C [0,1]* be a finite hypothesis class of size K. Let
0:Y xY —[0,1] be a loss function that is convex in its first argument.
Then the generalized EWA predictor works as follows:

Using the same tools as in the proof of Theorem 3.3, we can establish
the following result:

Theorem 3.4. For any data x,y” and any bounded convex loss £(¢, y),
Algorithm 3.3 enjoys the following risk bound

T T
. In([#]) 0T
(9 < inf L(h —_— 4+ —.
; (e, ye) < 1112%; (h(xt), ) + 0 T3
Taking n = Slng}l'), we have

reg ) (D, 1) < O(,/Tlog |H]). (3.8)
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Algorithm 3.3 Exponential Weighted algorithm for General Loss
1: Initialize: Set weights w(®) = (1,...,1) € RX.
2: for each round t =1,2,...,7 do
w(f—l)

3: Define distribution p.[k] = W, Vk € [K].
=1
4: Predict g := YK | 5i[k] - ha(x0).

5: Update weights:

w,(:) = w(tfl) cexp (—n - L(hp(xt),ut)), Yk € [K],

where 17 < 1 is a tunable learning rate.
6: end for

Proof. Define the potential W) = Zéil w,(:). Observe that:

K (t-1)
n L@ 1 Z Wy, e—né(hk(xt)vyy)
W=D = WD
(a) K w(t—l) 772
= _nkzl Wz(hk(xt)a yt) + )
K (t-1) 2
® wy__he(x) U
= —n-/ <kz::1 Wy Y g

© A 2
= —n-L(Jt,yt) + g

3

where (a) follows by Hoeffding’s Lemma [9, Lemma A.1] and 4(3,y) €
[0,1]; (b) follows by the convexity of ¢; and (c) follows by the definition
of ;. The theorem now follows the same way as Theorem 3.3 0

We now complete this section with a stronger regret bound for the
exp-concave losses (e.g, log-los and Brier loss) discussed in Chapter 2.1.

Theorem 3.5. For any data x’,y” and any a-exp-concave loss £(,y)
(cf. Chapter 2.1), Algorithm 3.3 with 7 := « enjoys the following regret

bound:

1
reglt) (@.7) < 2.
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Proof. Denote W® = YK | w,(f). We have (taking 7 := «):
w® K (t-1)

—n Yk _emellhx)u)

= W(tfl)

(t=1)
w
—al <ZkK=1 Wk(tl)hk(xt)yyt>
<Ine

— p e @eye) — —al(Ge, 1),

In

where the inequality follows by Jensen and a-Exp-concavity of £. The
theorem now follows the same way as Theorem 3.3. ]

3.4 Bibliographical Notes

The materials in this section are mostly standard, and can be found in
textbooks such as [9] and [11].
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Minimax Regret

In this section, we collect definitions and general results regarding the
minimaz regret, one of the most important measures in online learning
problems. We first discuss the worst-case minimax regret, and then
briefly address the expected minimax regret. For logarithmic loss (for a
detailed analysis see Chapter 5), we introduce the so-called Shtarkov
sum, which will be used throughout to analyze the minimax regret.
For Lipschitz loss (for a detailed analysis see Chapter 6), we present
the so-called Bayesian representation via the Minimax Switching Trick,
which will also be used in the analysis of regret.

4.1 Definitions and General Results

Let X be the instance space, ) the label space, and Y a (convex)
outcome space of predictors. We define the hypothesis class as H C V.
and the (possibly improper) learning rule as

D (X XY XX =Y.

We consider the following general online learning game:
Fort=1,2,...,T:

1. Nature (or the environment) presents an instance x; € X.

32
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2. The learner predicts a label §; € Y via g := ®(x!, 3y 1).
3. Nature reveals the true label y; € V.

4. The learner suffers a loss ¢(J:, yt), for some loss function:

(:YxY >R

The learner’s goal is to minimize, against the worst-case Nature,
the regret, which is defined as the excess of the cumulative loss over the
best cumulative loss achieved by any expert in the hypothesis class H.
For any given x” € X7 and y” € YT, the point-wise regret is defined as

T T
Rp(H,@,x" y") =Y o@x"y'" ), m) — ggf{zﬁ(h(xlf%yt) (4.1)
Pt =1

The worst-case regret for a given learning rule ® is defined as

regr(H, ®) := sup Rr(H,®,x7,y7).

XT,yT
The minimazx regret for the hypothesis class H is defined as

regr(H) = i%f regr(H,P) = i%f sup Rp(H,®,xT yT). (4.2)

xT7yT

The next result shows that the above definition is equivalent to the
sequential regret briefly discussed in Chapter 1.2.

Theorem 4.1. The minimax regret satisfies

T T
regT(H) = Sup ipf sSup - - -sup ipf sup ZE(@M yt) — inf Zf(h(xt), yt)
x1 Y1 oy xr 91 yr ;53 heH =1
(4.3)

for any loss function ¢ and class H.

Proof. We prove only the case for 7" = 1 to demonstrate the idea. Define
the function:

Fla.b) 5= sup [t(a,n) = fnf ((1(0),10)]

Y1

Note that:
reg, (M) := inf sup F(®(x1), x1).
¢ x;
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By Skolemization Lemma 2.2, we have:

i%f sup F(®(x1),x1) = supinf F(§1,x1).
x1

x1 U

Plugging back the expression of F'(a,b), we find

reg (M) = supinf sup |£(g1,y1) — gg%g(h(xl)ayl) .

X1 Y1 y1

Iterating this argument we prove Theorem 4.1. O

Note that in the definition of minimax regret, the predictor must
compete with the worst-case data sequences x!, 4T, which can some-
times be overly pessimistic in real-world scenarios. Depending on how
the features are selected, one may also consider the following relaxed
notions of minimax regret:

Expected Worst-Case Minimax Regret. In this case, Nature selects
some distribution vT over X7 (i.e., a random process) and samples
xT ~ v where xT' = (x1,...,xr). At each time step ¢t < T, Nature
reveals X; to the predictor, who makes a prediction ; = ®(x,y'~1)
potentially using the history x’ = (x1,--- , %) and ¥~ ! = (y1, -+ , 1)
that are observed thus far. Nature then reveals the true label y; after the
prediction, and the predictor incurs a loss (9, y;) for some predefined
convez loss function £ : Y x Y — [0,00). The expected worst-case

minimax regret is then defined as:

T T
_ . . - - . t t—1 o
regr(H,P) = 1gf sup Eyr., bupZé((b(x Y)Y }}ngf_[;ﬁ(h()(t)yyt) 5

vTeP TE—

(4.4)
where H is a class of functions X — Y, P is a general class of ran-
dom processes over X1, and the predictor ® runs over all possible
(deterministic) prediction rules.

Fixed Design Minimax Regret. In some scenarios the so called fized

design or transductive regret are of interest. In this case, the feature x”
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is known in advance. More precisely, for any given x’, we define the
fixed design minimax regret as:

T
regh(H | x7) = inf su o(@(xT, - 1nf L(h .
gr(H|x") =in up L; (@G 97 h)m) Z

(4.5)
Recall the (sequential) minimax regret is defined as:

T T
H) = inf 0(@(x,y' 1Y), ) — inf > 4(h(xy), .
regr(H) = in S LX; (@9 1), u) ’%2’*; (h(xt), yt)
It is easy to observe that:

regi(H) := supregp(H | xT) < regp(H). (4.6)
xT
Thus reg}(H) can be viewed as a universal lower bound for regret.

4.2 Minimax Regret for Bounded Lipchitz Loss: Switch Lemma

We now present a general theorem regarding the worst-case minimax
regret for bounded Lipschitz loss, which is due to [24]. Let Y = ) :=
[0,1] and H C V¥, The minimax regret for H can be expressed as in
Theorem 4.1

T T

regy(H) = supinf sup - - - sup inf sup ZE O¢,y¢) — inf Zﬁ(h(xt
x1 91 oy xr 9r yr i heH ;=

However, this iterative minimax operator may be hard to compute. It

turns out that we can replace it by a simpler operator as shown below.

Theorem 4.2. Assume the loss ¢ is bounded and ¢(-,y) is convex and
continuous, ) is convex and A(X x Y) is compact. Then the minimax
regret regy(H) equals

T
sup ]E(XT7 Z

T
(Ge,ye)] — inf > L(h(xe),ye) |,
VTEA(XXY)T hen tz::l

(4.7)

inf B
19€Y

where A(X x Y)7T is the set of all distributions over (X x Y)? and E;

denotes the conditional expectation of ¥* conditioning on x*, y*~ .
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Proof. Observe that the iterated minimax formulation can be written
as:

T T
supinfsup---infsup | Y 0(G, ye) — inf > L(h(xe),yt)| »
t=1 hen i

zo Y1 zp yr zr
where zg = x1, z; = (yt, X¢+1) for t < T and zp = yp. Consider the last

layer:

T
mfsupzz e ye) — Inf >~ E(h(x;
t=1

yTthl

F(zT)

T—1
= £(Ye, y¢) + inf sup [E(@T, zZr) — F(zT)} .

t=1 Yyr zr

We now bound the second term. By the Minimax Switching Theorem 2.4,

we have:
inf sup [E(@T, zr) — F(ZT)} = sup inf Eg g [Z(QT, zZr) — F(ZT)}
yr zr HTEA(XXY) YT

= supinf [y, [((jr, 27)] — Eqp [F(27)]]

pr YT

= sup l:lpf IE’zT [E(QT7 ZT)] - IEZT [F(ZT)]

pr LYT

=supE,, [mf E., [0(9r,z7)] — F(ZT)] :
KT

Note now that

(a)
SupEz vy - SUpEgppy = sup E,r 7,
H1 M vTeA((XxY)T)

T

where v7 is a joint distribution over (X x V)T and (a) follows by

Skolemization. We conclude:

T

regr(H) = sup B |y infE, [0(G,2)] - F(z")
vTeA((Xx))T) = Ut

and this completes the proof. O
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4.3 Minimax Regret for Logarithmic Loss: Shtarkov Sum

We now consider a special yet important loss: the logarithmic loss, which
is non-Lipschitz and unbounded. As a result, the guarantees from the
previous section do not apply directly. Let ) denote the label space,
and let A()) be the set of all probability distributions over ). The
logarithmic loss for any p € A(Y) and y € Y is defined as:

(% (p, y) = —log ply]. (4.8)

We start by considering the fixed design minimax regret introduced
in (4.5) which for logarithmic loss becomes

T T
g (7)< igfonp |32 05 00) = jnf, 5= 0%k )| (49)

yT

where p; = ®(xT,y""1) € A(Y). We can express the fixed design
minimax regret (4.9) via the so-called Shtarkov sum discussed next. Let
H C A(Y)?* be a hypothesis class and x? be any given instances. The
Shtarkov sum of H conditioning on x” is defined as

T
Sht(H | x7) = > sup [] A(xe) [y (4.10)
yTeyT M€ =1
Example 4.1. Let # be a finite class, we have for any x’ that

T
Sht(#H | xT) = Z sup H h(xt)[yt]

yTeyT heH ;1

T
< Z ZHh(Xt)[yt]

yTeyT heH t=1
X (a)
=> > JIr&)w < > 1=1H|
heH yTeYT t=1 heH

where (a) follows from the fact that the second sum adds to 1 since it
represents a distribution.

The next theorem shows that the fixed design minimax regret for
logarithmic loss can be computed via the Shtarkov sum.
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Theorem 4.3. Let 4 C A(Y)? be any hypothesis class, and let x” be
any given instances. Then

reg(H | xT) = log Sht(# | xT). (4.11)
Proof. We introduce the following short-hand notations

T
Py ( T‘X HhXt Yil, Hﬁ Yil-

Observe, by definition of log-loss, that

reg?(H | x7) = inf sup [— log Q(y") + logsup Py (y" | xT)
Q T h

= infsup |~ log Q(y") + log P*(y" | x")]

Q T
+1log > sup Py(y" | x")
yr
@ longup Pu(y" | xT) = log Sht(H | xT),
T
s (0T | T .— 5P Po(y”[x") ; ;

vihere P*(y" | x") = S~ supy P (57T and (a) follows setting optimal
Q() = P*(- | xT). O

A by-product of our previous proof shows that the minimax optimal
predictor satisfies equality

Q) = P(-|x"),

where
oo T oy Supy Pu(y” | xT)
Py’ |x") = T
> ,r supy, Pr(yT | xT)

and Q(y7) = [T, pi[y:]. To satisfy the equality, we can define

Sy Py tyy™ Tt [ xT)
Sy Pyt TyT—H T [xT)

Dyl =

This is known as the Normalized Maximum Likelihood (NML) predictor.
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Finally, we made two remarks. For a finite class H, we immediately
have
reg(H | xT) = log Sht(# | xT) < log|#|.

Furthermore, the Shtarkov sum forms a lower bound for the (sequential)
minimax regret:

regy(H) > sup regi(# | x7) > suplog Sht(# | x7).
xT

xT

Minimax Regret via Contextual Shtarkov. Thus far, we have only
dealt with fixed design minimax regret for logarithmic loss. However,
it can also be extended to the sequential minimax regret. For this, we
need a new concept, recently introduced by [37], called the contextual
Shtarkov sum.

Let 7: UL, V! = X be an X-valued |Y|-ary tree of depth T'. The
contextual Shtarkov sum w.r.t. 7 is defined as

Sht(H | 7) Z sup H h(r [ye]- (4.12)

T hEHt 1

It turns out that the contextual Shtarkov is the needed tool to express
the sequential minimax regret as shown in the below theorem.

Theorem 4.4. Let H C A(Y)?Y be any hypothesis class. Then:
regy(H) = sup log Sht(H | 7).

Sketch of Proof. We provide only the high-level idea (for a detailed
proof see [37]):

Step One: Using the minimax switching trick as in Theorem 2.4 and
a truncation argument, we obtain the following Bayesian representation:

T
sup Ey,np, -+ sup Eypopr [Z ingytht [€°% (P, ye)] — mf Z€'°g
t

X1,P1 XT,PT =1

Step Two: Observe that:

inf By, [(°%(01 )] = H(po),
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where H(p;) is the Shannon entropy.

Step Three: Via Skolemization Lemma 2.2 the expression reduces

to:
T

: | t—1
SUp Sup Eyr.p |H(P) - inf t:1€°g(h(7(y ))sye) | s
where 7 runs over all trees 7 : [JI_; V! — X and P € A(YT).
Step Four: Denote x; = 7(y*~1), and let P, (y7|xT) = T, h(x:)[yi].
We have

T

inf €|°g(h(7(yt_1)), y;) = inf — log Ph(yT]xT) = —sup log Ph(yT]xT).
heH = h b

Therefore, we find
SupE,r.p [H(P) + log sup Ph<yT|xT>} ~suplE [ log P(y") + log sup Py (y"x")
P h h

=supE |—log P(y" ) + log P*( Tx —|—10 su h(x
upE [~ log P(y") +log P*(y"]| gZthyt

—sup KL(P, P*¥) —Honguth X¢) [yt

\_\,_/ yT t=1
=0
# (T 1Ty — __supy Pu(y"|x") T :
Here, P*(y"|x") S supn P TRT) and the last equality is attained
T SUPp
at P = P*. ' 0

4.4 Bibliographical Notes

There is a vast literature on redundancy and regret in information
theory [1], [38], [39], [2], [6]-[8], [19]. The notions of regret and minimax
regret in machine learning are well known and have been extensively
discussed; see, e.g., [11], [40].

Theorem 4.1 appears to be known (see [9]); however, the proof
presented in this chapter seems to be new. The fixed-design minimax
regret has been previously studied in the machine learning literature
under the name Transductive Online Learning; see [41]. The Bayesian
representation of minimax regret in Theorem 4.2 was developed by [24].
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The logarithmic loss is extensively discussed in the information
theory literature in the context of source coding. In 1984, Shtarkov [18]
introduced the worst-case minimax redundancy for source coding and
used the maximum likelihood distribution to derive a precise inequality
on the worst-case redundancy via the Shtarkov sum. This was trans-
lated in [2] into an exact expression for worst-case redundancy, where
sequences modulo 1 are used to characterize redundancy for Shannon
and Huffman codes. A novel extension of the Shtarkov sum to fixed
design regret was introduced in [42] and to the sequential minimax
regret in [37], where the contextual Shtarkov sum is introduced.



5

Minimax Regret with Log-loss

In this chapter, we present novel results for minimax regret with logarith-
mic loss (log-loss), as defined in (4.8). We consider only binary-valued
labels ) = {0, 1}, for which the log-loss can be equivalently written as

(G, yt) = —yelog(Pe) — (1 — i) log(1 — Gi),

where y; € Y and g, € [0,1] is the prediction, interpreted as the
probability assigned to label 1. Our main tool in this section will be
the Shtarkov sum, already discussed in Chapter 4, which we evaluate
precisely to obtain tight bounds on the minimax regret.

5.1 Bayesian Predictor

We begin with a general Bayesian predictor for log-loss, which we will
later refine to obtain tighter bounds. Let G be any reference class of
(sequential) functions mapping A* — [0, 1], where X* denotes finite
sequences over X, and let ) = {0,1}. Let W be an index set for G, and
let u be an arbitrary finite measure over W. The standard Bayesian
predictor with prior u is presented in Algorithm 5.1. Based on this
algorithm, the following two lemmas are used to establish most of the
upper bounds presented in this chapter.

42
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Algorithm 5.1 Bayesian predictor

Input: Reference class G := {g,, : w € W} with index set W and prior
u over W

1: Set py,(y° | x°) = 1 for all w € W.

2: fort=1,---,T do

3: Receive feature vector x;

4: Make prediction with the following equation:

gy — D guCpu(y' [ <" Tdu

5.1
Jwpw(y=t [ x!=1)dp 51)
5: Receive label y;
6: For all w € W, update:
_ t _ _
pw(yt ‘ Xt) — ¢ (gw(x ),yt)pw(yt 1 ‘ xt 1)_ (5.2)

7: end for

Lemma 5.1. Let G be a collection of functions g,, : X* — [0, 1], w € W.
Let g; be the Bayesian prediction rule (5.1) as in Step 4 of Algorithm 5.1
with prior y. Then, for any x” and 37 we have

T T T
~ Pw\lY x')d
Zf(yt,yt) < —log Jw f( 1<|i/t )y
W

where
. T
pw(yT | XT) — e D iy Ugw (X)) | | )Ve(1 — w(ib‘t))l_yt

and / is the log-loss as in equation (4.8).

Proof. We first observe that for any y € {0, 1} we have e~t0¥) ig concave
over [0, 1]. Let

Puw (yt—l ’ Xt—l)
S po(yt= [ xI=1)dp

Note that A\;—1(w) forms a probability density over W w.r.t. u. By

)\t—l (w) =

definition of §;, we have §; = Ej,_,[gw(x")], where the expectation is
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over the density of A\;_1(w). Therefore, by Jensen’s inequality and the
update procedure as in item 6 of Algorithm 5.1, we have

b ot

e~ Hi30) — o ~(Elou (<)) > Fle—tow(x)w0)] — Jwpuly” | x)dp
- Jwpe(yt=t [ x=1)du

By telescoping the sum, we find

6_23:14(@t yt) prw( T ’ X ) ,u‘

Jw 1dp
This implies
T T | T
X pw(y” | x7)dp
Zg(ytayt) < —log I f( 1C|1M )
w
and completes the proof. O

The following lemma bounds the regret under log-loss of finite
classes.

Lemma 5.2. For any finite class of experts G, we have reg(G) < log |G].

Proof. Let u(w) = \Tlv| as in Lemma 5.1 and §; be the Bayesian predictor
with input G and p. Then

T T | T
N pw(y” | x")dp
Zg(ytayt) < —log by ; 1(|1M )
w

= —log/ pu(y” [ x")du+log1
w

= —log / pu(y’ | x)dp
w

< —logpw*( T xT) +log [W|, w* maximizes p,(y” | x7)

= ZE guw(x"),y¢) +log |G|, since [W| = |G|.
This concludes the proof. O

We should remark that the regrets established in this section hold
for (sequential) function classes G, which generate outputs using the
entire feature history x! at each time step ¢. This is in contrast to the
static function class H discussed earlier, which generates outputs based
only on the current feature x;. This notion is also sometimes referred
to as dynamic functions as in [43].
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5.2 General Upper Bound via Smoothing

We begin by introducing a notion of a covering, called the global se-
quential cover, which was implicitly used in [24, Section 6.1] to derive
regret bounds under the absolute loss, and traces back to ideas in [35].

Definition 5.1 (Global sequential covering). For any H C [0,1]%, we say
class G of functions map X* — [0, 1] is a global sequential a-covering
of H at scale « if for any x7 € XT and h € H, there exists g € G such
that V¢ € [T,

h(xt) — g(x")] < a.

Throughout we assume that 0 < o < 1.
To apply the global sequential cover we need to modify the standard

Bayesian Algorithm 5.1 to the so called smooth truncated Bayesian
predictor presented in Algorithm 5.2.

Algorithm 5.2 Smooth truncated Bayesian predictor
Input: Reference class G with index set W and prior p over W, and

truncation parameter a.
1: Let py(y° | x%) =1 forallw e W
2: fort=1,---,T do
3: Receive feature x;
4: For all w € W, set

- t\ gw(xt) +«
Gu(x) =75 — (5.3)
5: Make prediction
gt — fW gw(xt)pw(yt_l ’ Xt_l)d/‘L (54)
Jwpw(y =t [ x=1)dp
Receive label y;
For all w € W, update:
puly’ | x') = e by, (=1 | X171, (5.5)

8: end for
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We are now in the position to state our first main general finding.

Theorem 5.3. If, for any o > 0, there exists a global sequential a-
covering set G, of H, then for log-loss, the minimax regret satisfies

regr(H) < inf {Tlog(l+2a) +log|Gul} < inf {2aT +log|Gal},

(5.6)
and this bound is achieved by Algorithm 5.2.

The proof is based on the following key lemma.

Lemma 5.4. Suppose H has a global sequential a-covering set G for
some a € [0, 1]. Then, there exists a truncated set G of G with |G| = |G|
such that for all x”', y” and h € H there exists a § € G satisfying

ph(?JT | XT) T
pa(y™ | X7 <(1+42a) , (5.7)
where
T
pu(y" | x7) = T h(xe)¥ (1 = h(xy))' 7%
=1
and

Proof. We construct the set G as in Algorithm 5.2. For any g € G, we
define a smooth truncated function § such that for any x* € x*
t
o 9x)Ha
We introduce the following short-hand notation; for any function f, we
define f(y;) = f(x)¥(1 — f(x'))'~%. For any x',y”, and h € H, let
g € G be a a-covering of h and § be the truncated function as defined

above. Now, the key observation is that for any y, € {0,1}, we have
h(y:) < g(yt) + « since g a-covers h. This implies that

h(y:)
g(yt)

9(yt) +

W) +a)/(t2a) T

<
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Therefore, we have

ply” [ x") ﬁ h(yt
pa(y" | 1 9(ye)
< (1+20)".
This completes the proof of Lemma 5.4. O

Proof of Theorem 5.3. We show that for any 0 < a < 1 if an a-covering
set G, exists, then one can achieve the claimed bound for such an a.
To do so, we run the Smooth truncated Bayesian Algorithm 5.2 on G,
with uniform prior and truncation parameter a. We denote by Go to
be the truncated class of G, as in Lemma 5.4. We now fix x’,y”. By
Lemma 5.2 (with G being Qa), we have

Zﬁ (Ot yt) < 1nf ZE ), yt)+log |Ga| = inf 25 ", yi)+log [Gal,
O‘t 1 9€ga t=1

the last equality follows from |G,| = |Ga|. Since ST, (f(xY),y:) =

—logps(y’ | xT) for any function f, then by Lemma 5.4 we conclude

that

T
inf I(h(x > mf (g —Tlog(1+2a).
w2 (h(xt), yt) a; s Yt) g ( )

The result follows by combining the inequalities and noticing that
log(1 4+ z) <z for all x > —1. O

We will demonstrate how Theorem 5.3 can be applied in various
contexts to obtain tight regret upper bounds by appropriately designing
the covering set G in the following sections.

5.3 Lipschitz Parametric Class.

We now consider a Lipschitz parametric function class. Given a function
f:W x X — [0,1], define the following class

Hy={f(w,") €[0,1]" : weW},

where w € W is often a d-dimensional vector in RZ.
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We will assume that f(w,x) is L-Lipschitz on w for every x, where
L € R*. More formally, Vw1, ws € W and x € X we have

|f(w1,x) — f(w2,x)| < L||w1 — wal],

where || - || is some norm on W. For example, if we take YW C R then
the norm can be £y, 5 or {5, norm. For any specific norm || - ||, we write
B(R) for the ball under such norm with radius R in V. In particular,
we denote by BY(R) the ball in R? of radius R under £; norm centered
at the origin.

Theorem 5.5. Let f : BY(R) x R? — [0,1] be a L-Lipschitz function
under ¢4 norm. Then

regr(Hy) < min {dlog (QR;;T + 1) + 2d,T} . (5.8)

Proof. By L-Lipschitz condition, to find an a-covering in the sense of
Definition 5.1, we only need to find a covering of B4(R) with radius
a/L. By standard result (see e.g. Lemma 5.7 and Example 5.8 of [44])
we know that the covering size is upper bounded by

<2RL )d
== t1) .

«

By Theorem 5.3, we find

2RL
< i st .
regT(Hf) > 0<H(}4£1 {QOZT + dlog < ” + 1) }

Taking a = d/T', we conclude

2RLT
regr(Hy) < dlog (Rd + 1) + 2d.

This completes the proof for T' > d. The upper bound 7' is achieved by
predicting % every time. O

Example 5.1. For logistic function f(w,x) = (1 + e~ ™">)~1 and
w € B(R) with x € B4(1) our result recovers those of [45], but with a
better leading constant (the bound in [45] has a constant 5). Note that,
the result in [46] also provides a sub-optimal constant ¢ ~ 4. Moreover,
our bounds have a logarithmic dependency on Lipschitz constant L.
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The question arises whether the factor in front of logT can be
improved to d/2 instead of d as discussed in some recent papers [42],
[47], [48]. In Theorem 5.6 below, we show that, in general, it cannot
unless we further strengthen our assumption (see Theorem 5.9). For
the ease of presentation, we only consider the parameters restricted to
{5 norm.

Theorem 5.6. For any d,T, R, L such that T" > dlog(RLT), there
exists L-Lipschitz function f : B§(R) x R? — [0, 1] such that

LT
regr(Hy) > dlog (Rd> — dlog 64 — dloglog(RLT). (5.9)

We need the following two lemmas to prove Theorem 5.6.

Lemma 5.7. Let P be a finite class of distributions over the same
domain 2. Denote

to be the Shtarkov sum. Then for any estimation rule ® : ) — P we
have:

52 1P (1 - maxp (s @) # 1))

Proof. Note that ® partitions € into |P| disjoint parts. For any p € P,
we denote 2, = {w € Q: ®(w) = p} to be the partition corresponding
to p. We have:

S p() = Y pulw) < Y maxp(w) = S,
peEP we weN

where p,, € P is the distribution such that w € €2, . This implies

min p(€2 —.

peEP P() < |P|
The result follows by taking the complements of €2,,. O
Lemma 5.8. For any M < eT/S, there exist M vectors vy, v, -+ ,vp €

{0,1}T such that for any i # j € [M] we have:

z:l{vZ #vj[t]} > T/4.
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Proof. This follows from standard packing number estimates of the
Boolean cube, see [44, Example 5.3]. O

Proof of Theorem 5.6. Let x1,--- ,x7 € R? be any distinct points. We
will construct a L-Lipschitz function f(w,x) such that the regret re-
stricted only on x” is large. To do so, we consider a maximum packing
M of the parameter space BS(R) of radius a/L > 0 (where « is to be
determined latter). Standard volume argument (see Chapter 5 of [44])

yields that .
|M| > (LR> :
2a
Now, we will define a L-Lipschitz functions f(w,x) only on w € M
and x € {x1, - ,x7}. By Lemma 5.8 (assume for now the conditions
are satisfied), we can find | M| binary vectors V C {0,1}7 such that any
pair of the vectors has Hamming distance lower bounded by 7'/4. For
each of the vector v € V, we define a vector u € [0,1]7 in the following
way, for all ¢t € [T

1. If v[t] = 0 then set u[t] = 0;
2. If v[t] = 1 then set u[t] = .

Denote by U be the set of all such vectors u. Note that |U| = M.
For any w € M, we can associate a unique v € U such that for all
t e [T

f(w,x¢) = ult].

We now show that f is indeed L-Lipschitz restricted on M for all
x; € {x1, -+ ,xp}. This is because for any w; # wg € M we have
|f(w1,%x¢) — f(wa,%x¢)| < a by definition of U and ||w; — wal|2 > /L
since M is a packing.

We now view the vectors in u € U as a product of Bernoulli distri-
butions with each coordinate ¢ independently sampled from Bern(u[t]).
We show that the sources in U are identifiable. To see this, we note that
for any distinct pairs ui, ug € U, there exist a set I € [T] such that u
and ug differ on I and |I| > T'/4. This further implies that there exists
a set J C I with |J| > T/8 such that u; takes all 0 on J and uy takes
all a on J (or vice versa). We can then distinguish u;, ug by checking if
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the samples on J are all Os or not. The probability of making error is
upper bounded by
(1 . a)T/8 < efaT/S‘

Since there are only |M|? such pairs, we have the probability of wrongly
identifying the source upper bounded by

’M‘Qe—aT/S.
Taking o = %(RLT), the error probability is upper bounded by
< RLT >2d ~2dlog(RIT) < L >2d 1
32dlog(RLT) ~ \32dlog(RLT)) — 2’

for sufficient large d,T', where we have use the fact that

RLT

M| < (2
| |_(32dlog(RLT)

)7

Note that we only showed a lower bound on |M| before, but this is not
a problem since we can always remove some points from M to make
the upper bound holds as well.

By Lemma 5.7, we know that the Shtarkov sum of sources in U is
lower bounded by |M|/2. Therefore, we have

regy(Hy) = regr(Hy) = log(|M|/2)
> dlog (RLT'/d) — dlog 64 — dloglog(RLT).

Now, we have to extend the function to the whole set B(R) and
keep the L-Lipschitz property. This follows from a classical result in
real analysis (see [49, Theorem 1]) by defining for all w € BY(R) and
Xt € {Xla" ’ ,XT}

flw,x¢) = sup {f(w',x¢) — Ll|w — w'||2}.
w'eM
For the x & {x1,--+ ,x7}, we can simply let f(w,x) =0 for all w.

Finally, we need to check that the condition of Lemma 5.8 holds for
our choice of «, this is satisfied by our assumption 7' > dlog(RLT). O
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5.3.1 Lipschitz Class with Bounded Hessian.

As we have demonstrated in Theorem 5.6 the leading constant 1 of the
regret for Lipschitz parametric classes can not be improved in general.
We now show that for some special function f € Hy one can improve
the constant to 3, as already noticed in [42], [47], [48]. For any function
f:RYx R — [0, 1], we say the Hessian of log f is uniformly bounded
on X C R?, if there exists a constant C such that for any w € R? and
x € X and y € {0,1} we have

sup [u” V3, log f(w,x)!(1 — f(w,x))'"*u| < C,
fl2<1

where V2 is the Hessian at w.

Theorem 5.9. Let f : RY x R? — [0,1] be a function such that the
Hessian of log f is uniformly bounded by C on X. Let

He={f(w,x):weW,xec X}

be such that f is restricted to some compact set W C R%. Then for any
e >0,

Vol(W*)
® Vol(B§(0)
where W* = {w+u | w € W, u € Bf(e)}, Vol(-) is volume under

Lebesgue measure. In particular, for W = B4(R) and € = \/d/CT, we
have

1
reg;(Hy) < lo + 5CTe2 +1log 2. (5.10)

d 20 R2T
regT(Hf) < glog <

+2> +d/2 4 log2.

Note that, Theorem 5.9 subsumes the results of [47], [50], where
the authors considered the function of form f((w,x)) and requires that
the second derivative of log f is bounded, see also [9, Chapter 11.10].
However, the KL-divergence-based argument of [50] can not be used
directly in the setup of Theorem 5.9 since we do not assume the function
f has a linear structure. Our main proof technique of Theorem 5.9 is a
direct application of Lemma 5.1 and an estimation of the integrals via
Taylor expansion.
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Proof of Theorem 5.9. The proof resembles that of [45] but running
the Bayesian predictor (Algorithm 5.1) over W* instead of W with G
being H; and p being Lebesgue measure. Let x”, yT and §7 be the
feature, label and predictions of the Bayesian predictor respectively. By
Lemma 5.1

T T T
R S pw(y” | x7)dp
E(yta Z/t) S - lOg 9

where p is the Lebesgue measure and

(5.11)

T
pw(y" | xT) = T F(woxe)? (1= flw, %)) 7%
t=1
We now write hy(w) &t log f(w,x;)% (1 — f(w,x))! 7% to simplify
notation. It is easy to see that ¢(f(w,x;),y:) = —hi(w). Let w* be the
point in W that maximizes

h(w) < Z hy(w).

Let u = Vh(w*) be the gradient of h at w*. By Taylor theorem, we
have for any w € W*

h(w) = h(w") +u”(w — w") + %(w — W)V, h(w) (W — W),

where w’ is a convex combination of w and w* and u” is the transpose
of u.

Now, the key observation is that for any point w such that u”(w —
w*) > 0 we have

H(w) 2 AW ) 3 (W) V3w ) (ww*) > h(w")~ L OTw—w"|3,
(5.12)
where the last inequality follows from our assumption about the bounded
Hessian of log f. Let B be the half ball of radius € centered at w* such
that for all w € B we have u?(w — w*) > 0. By (5.12), for all w € B

h(w) > h(w*) — %CT& (5.13)
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Note that B C W*. Then using above observations we arrive at

T T | T
E(Ge, ye) < —log (5.14)
; fw* 1dp
T | T
< —log Jppwly” | x )d,u’ since B C W* (5.15)
~CTe? /2 T <T
fW* 1d,LL
Vol(B)
= —logpw+ (YT | xT) + OT€*/2 — log ——~ "< 1
ogpw+(y" | x7)+CTe/ 8 Toi07") (5.17)
LVol(Bd(¢))
= L7 | xT 29 _ g 220\P2\E))
= —logpw:(y" | x') +CTe* /2 —log Vol (W) (5.18)
Vol(W*) 9
= f(w” log —————— + CTe*/2 + log 2.
; (f(W",x¢), 1) + log Vol(BY(e)) + CTe*/2 + log
(5.19)

This completes the proof of the general bound. The last part of the
theorem follows from the fact that if W = B¢(R) then W* = BI(R + ¢)
and noticing that

Vol(B4(R + ¢))

VolBl(e)) = et D

as desired. 0

Remark 5.1. When compared to the technique in [51], Theorem 5.9
does not assume that the gradient critical point of the loss is zero
(e.g., the minimum may occur on the boundary). This is why we need
to restrict to the half ball B in order to discard the linear term of
Taylor expansion in Equation (5.13). Moreover, in the proof we work
directly on the continuous space instead of a discretized cover, giving
an efficient algorithm provided the posterior is efficiently samplable (by
e.g., assuming some log-concavity of f as in [45]).

We complete this section with the following lower bound for gener-
alized linear functions under unit /5 balls.
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Theorem 5.10. Let f : R — [0, 1] be an arbitrary function such that
there exists c¢1,c2 € (0,1) and for all » > 0 we have [¢1 — cad™", 1 +
c2d™"] C f([—=d™",d™"]) for all sufficiently large d. Let

Hp={f((w,x)) : w e B(1),x € BI(1)}

where s > 0. Then

d T

where O hides some absolute constant that is independent of d,T'.

Example 5.2 (Logistic function). Note that for the logistic function
f(z) = (1 + e ®)~! Theorem 5.10 holds with ¢; = 3 and ¢, = 1.
Therefore,

1. If s =1, then

regr(Hy) = g (5 ) - O(@).

2. If s =2, then

regr(Hy) > glog (52) —O(d).

3. If s = 00, then

regr(Hy) > glog C,;) - 0(d).

This recovers all the lower bounds from [47]. We note that a simple
sufficient condition for Theorem 5.10 to hold is to require f'(0) # 0 if
f(x) is differentiable.

Remark 5.2. We should remark that the leading constants of Theo-
rem 5.9 and 5.10 are matching only if d growth sub-polynomially w.r.t.
T (e.g., when d = em). However, when d growth polynomailly w.r.t.
T the leading constants will no longer match, though the bounds are
still having the same asymptotic rate ©(dlogT) for d < T%/*+2. More-
over, for s = 2 the condition d < /T cannot be relaxed since for any
function f with log f Lipschitz one can achieve a O(\/T ) upper bounds
independent of dimension d, see [45, Example 2].
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The proof of Theorem 5.10 is based on the following technical lemma.

Lemma 5.11. The following inequality holds, for r > 0:

sup P(y | w) > Q(y/T/d?+1), (5.21)

ye{0,1}7/4 we[e1 —cad =T, c1+cad™T]
where P(y | w) = w*(1 — w)?/?"* with k being the number of 1s in y.

Proof. By Stirling approximation, for all k € [T'/d], there exists a
constant C' € R™ such that

Bk, T/d) ¥ <T£d> (Tl;d)k (1_T;;d>:r/d_k

T/d
=\ wmja—n

Since P(y | w) achieves maximum at w = k - d/T, we have

ClT/d+02T/dT+1
s pylw= S BT/,
y€e{0,1}T/d weElc1—c2d ™" ,c1+c2d 7] k=c1T/d—csT/dr+1

Therefore, for each k in the above summation, we have that

B(k,T/d) > > \J(e1+ e2d7)(1 - ¢1 — e2d—")d/T.

1
JET/d—k)

Therefore, the LHS of (5.21) is lower bounded by

C\/(Cl + ngfr)(l —C1 — C2dr)\/§2dcr2 = Q(\/T/dmdd)

for sufficient large d. O

Proof of Theorem 5.10. Now we are ready to prove Theorem 5.10. We
choose a particular x7: We split the x? into d blocks each with
length of T'/d. With that, the ith part of the inputs and the out-
puts are denoted by x() = (X(T/d)-(i-1)+1> """ > X(T/d)s) and y(® =
(y(T/d)~(ifl)+17 cee ,y(T/d).i), respectively. For any any x; we set x(0) = ¢;
where e; is the standard d base of R? with 1 in position 7 and 0s other-
wise. Note that, with this choice of x;s, we have (w,x;) = w;, where w;
is the ith coordinate of w and x; € x(¥.
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We will lower bound ri(Hs | xT), which will automatically give
a lower bound on regr(#Hy). We only need to compute the following
Shtarkov sum

d
Sr(HsxD) = Y sup [ Pr(y@lw), (5.22)
yTe{0,1}T WEBL(1) =1

where Py(y®|w;) = f(w;)* (1 — f(w;))T/% % with k; being the number
of 1s in y(¥. We observe

d
yTe{0,1)T i=1 wi€[—d~1/2,d=1/+]

d
=11 > sup  Pp(y®wy)

i=1y()e{0,1}7/d wi €[—d—1/s d=1/3]

= g d
( sup Pf(y|w)>
ye{0,1}7/d we[—d—1/s,d=1/s)

d
ye{T/d} w€[c1—cad=1/% c14cad=1/9]

where P(y | w) is as in Lemma 5.11 and the last inequality holds since
[c1 — cad™ Y%, ¢ + cod™ V) € f([d~Y/*,d~/%]) by the assumption. Now,
Lemma 5.11 implies that

T d/2
T d
Sr(Hyp|x7) = ¢ <d(s+2)/s> ’

where ¢ is some absolute constant that is independent of d,T. We
conclude

X d T
regr(Hy) > regi(Hy) > log Sr(Hylx") > §log (d(s+2)/s> - O(d)
which completes the proof. O

5.3.2 Tight Constants Beyond Bounded Hessian

In the preceding sections, we analyzed the Bayesian predictor under a
uniform prior—equivalently, a uniform e-cover—on the parameter space.
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In this section, we show that for certain hypothesis classes, strictly better
regret bounds can be achieved by averaging over a carefully chosen
non-uniform cover. This phenomenon is well known in information
theory (cf. [52]) for the fixed-design regret. However, for the sequential
case, the situation is more complicated, since we need to deal with the
x!" without knowing it in advance.

We start with the following simple mixture class of two hypotheses :

Lemma 5.12. Let hy, he be arbitrary functions map X — [0,1]. We
define a function class H = {hy, = why + (1 — w)he : w € [0,1]}. Then
1
regr(H) < §logT+loglogT+ O(1).

Proof. For any given x”, y”, we denote h;(x;) = ( — U
ythi(x¢) for i € {1,2}. We also denote hy,(x¢) = X¢)
The log-loss over x,y” against h,, is

T
Zf(hw(xt)ayt) = Z -
t=1 t=1

Let g¢(w) = — log hy(x), we have

(i (x0) — Bz (x0))?

g9t (w) = Bw(Xt)Q

We now consider two cases:

1. If hy(x;) > ha(x;), we have (using elementary algebra):

1 1

9 ) = Toa(oc) o () = a0

2 If hy(x;) < ho(x;), we have (using elementary algebra):
1 1
g¢ (w)| = = = < :
= e (ot — (e = 0= P

)

N=

Let E be a non-uniform cover that is constructed as follows. Let eg =

1
en = (1 + \/;> €n_1-

we define recursively
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Let N be the maximum number for which ey < % It is easy to verify that
N < O(VTlogT). We define E = {e,,1—e, :n € {0,--- ,N}}U{0,1}.
By construction of E, we have for any w € [1/T,1 — 1/T] there exists
e € E such that

le —w| < min{wm, (1-— wM/l/?}

Let w* € [0,1] be the point that achieves the minimal of g(w) =
ST | g:(w). We have either w* = 0,1 or ¢’(w*) = 0. For the latter case,
we have by Taylor expansion, for all e (where w’ is convex combination
of e, w*):
ge) = g(w*) + ¢"(w') (e — w*)%.

Taking e € E be such that |e — w*| < min{w*\/1/T, (1 —w*)\/1/T}
(assume for now w* € [1/T,1 — 1/T)]) and using the property for ¢"(w)
above, we have

g(e) < g(w*) +O(1).

By applying the Bayesian algorithm over F with uniform prior, we
obtain the following regret bound

1
regr(H) <log|E|+ O(1) = §logT +loglog T + O(1).

Finally, we observe that the case for w* < 1/T or > 1 —1/T does not
affect the result, since by taking e = 1/T or 1 — 1/T (respectively)
guarantees that g(e) < g(w*) + O(1). O

Note that a uniform cover as in Theorem 5.5 would only give a log T’
term here, not the improved %logT rate.
Equipped with Lemma 5.12, we prove the following general result:

Theorem 5.13. Let {hy,...,hs} be any s functions and define

s s
”H:{ijhj : ij[O,l], ijzl}.
=1 j=1

Then

regr(H) < i logT + (s — 1) loglogT + O(s — 1).
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Proof. We define a recursive representation of mixture functions:

G, wi) = (1 —wi)hjp +w;GR 1 w/™h), i j > 2,
w1h1+(1—w1)h2, lf] =1.

Then the hypothesis class can be written as
H={Gh*,w™") : w;€[0,1] for all j} .

Let E be the covering set from Lemma 5.12. Define the approximate
hypothesis class

H= {G(hs,es_l) . e; € E for all j}.
Since |E| = O(vVTlogT), we have

—1
i 5 logT + (s — 1) loglog T.

log [H] <

Let L(h) = SSE, 0(h(x¢),:) be the cumulative log-loss. We will
prove by induction on s that

inf L(h) < inf L(h)+O(s —1). (5.23)
heH heH

The base case s = 2 is exactly Lemma 5.12. Assume the result holds
for s — 1. Let w* be the sequence of weights minimizing L(h) over H,
and choose e;_1 € E such that

LG 0, w g ean)) < LGRS, w)) + O(L).
Note that this function can be rewritten as
G(h®,wi, ... wi g es 1) =GR wi,. .., wiy),

where each ﬁj = (1 — es—1)hs + es—1hj. By the induction hypothesis,
there exist eq,...,es_o € E such that

L(G(ﬁsfl, €ly...,€5-2)) < L(G(ﬁsfl,wf, ceWh_9)) +O(s —2).
Finally, observe that
L(G(}N'Ls_l, €1,... ,65_2)) = L(G(hs, Clyeeny €S_1>).

This completes the proof of inequality (5.23)
Applying the Bayesian aggregation over ‘H with a uniform prior
yields the stated regret bound. O
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Corollary 5.14. Let f = (w,x) with w € B¢(1) N [0,1]¢ and x € [0, 1]¢.
Then we have

d
regr(Hy) < 3 logT + dloglogT + O(d).

Proof. Note that H is a convex combination of (e;,x) with j € [d]
and the all-zero valued function, where e; is the standard base of R?
with value 1 at position j and zeros elsewhere. The result follows by
Theorem 5.13 by taking s =d + 1. O

Remark 5.3. Note that the function log f in Corollary 5.14 is neither
Lipschitz nor has bounded Hessian, yet we can still achieve a % leading
constant. It is worth noting that using the result in [9, Chapter 9.10]
and the expected majorizing martingale characterization for rp under
Lipschitz loss as established in [24], one can show that the % constant can
be also achieved if we only assume log f is Lipschitz (i.e., no requirement
on Hessian). This does not apply to the case in Corollary 5.14, since in
our case the function log f is not even Lipschitz.

5.4 Large Growth.

We now introduce results for the setting where the dimension d grows
faster than the time horizon T'. This is achieved by bounding the size
of the global sequential covering (see Definition 5.1) using the notion of
the sequential fat-shattering dimension.

We begin by introducing the definition of the sequential fat-shattering
dimension from [24] (see also Section 2.2).

Definition 5.2 (Sequential Fat-Shattering). : Let H# C [0,1]*. We say
a X-valued binary tree 7 : J%_,{0,1}" — X is a-fat-shattered by H,
witnessed by a R-valued binary tree s : U,?:O{O, 1} — R, if for any
e € {0,1}¢, there exists h € H such that:

1. If € = 0, then h(T(Gtil)) < s(etfl) —
2 e = 1, then h(r(c~1)) > s(c 1) + .

Example 5.3. We illustrate the sequential a-fat-shattering dimension
with an example below.
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Shattering Tree Witness Tree

/@

« @ & = wW @ & ©

Consider a path {0, 1}, the a-fat shattering ensures 3h € H such that:
(1) h(x1) < s1—a and (2) h(x2) > so+ta.

Definition 5.3. The sequential a-fat shattering dimension of H is defined
to be the maximum number d(«) such that H a-fat shatters a tree
7 of depth d := d(a)). We also write sfat,(H) =: d(«) if we want to
emphasize that the fat dimmension depdends on H.

In the below lemma, we present an upper bound for the cardinally
of the global covering set with algorithmically constructed cover set G,
see [24, Section 6.1] for proof.

Lemma 5.15. Let H be any class X — [0, 1] and d(«) be the sequential
a-fat shattering dimension of H. Then there exists a global sequential
a-covering set G, of H as in Definition 5.3 such that

d(e/2) t d(e/2)+1
T 1 T
|Ga| < t; <t> [J < [J : (5.24)

Example 5.4. By [24] we know that the sequential a-fat shattering
number of linear functions f(w,x) = |(w,x)| with w,x € BY(1) is of
order O(a~2) where in O we hide a polylog factor. Lemma 5.15 implies
that the global sequential a-covering number is upper bounded by

@

By Theorem 5.3, we have
regr(Hy) < inf {2aT + O R O(T*?)
T ~ 0<a<1 a?) )~ ’

by taking ac = T~1/3. This bound is independent of the data dimension
d.
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Remark 5.4. Observe that for any class H with sequential fat-shattering
dimension of order a~° one can achieve a regret upper bound of order
O(T*/**1) by Theorem 5.3. We refer to [24], [53] for the estimations of
the sequential fat-shattering dimension of a variety of classes.

We now present the following general lower bound:

Theorem 5.16. For any s > 1, we define

Dsz{pe [0, 1" Zptgl}

We can view the vectors in Dy as functions mapping [T'] — [0, 1]. Then
regy(Ds) > regi(Ds) > Q(T/5+1). (5.25)

Proof. By Theorem 4.3, it is sufficient to compute the Shtarkov sum.
For any 3T € {0,1}7 with k 1s, we claim that

T
su =
pegsp(y )= e

where
H Py _ 1 Yt

To see this, we use a perturbatzon argument. Denote I to be the positions
in 4T that takes value 1 and let |I| = k. For any p such that p(y”) is
maximum, we must have p; = 0 for all j ¢ I. Suppose otherwise, we
then can move some probability mass on p; to some p; < 1 with ¢ € I,
which will increase the value of p(yT), thus a contradiction. Now, we
need to show that

le - k.k/s

el
this follows easily by AM-GM (i.e., arithmetic mean vs geometric mean )
inequality since ) ;c;pf <1 and it is an equality when p; = for all

1 € I. Now, the Shtarkov sum can be written as

T
> G) kki/ (5.26)

k=0

kl/s



64 Minimax Regret with Log-loss

To find a lower bound, we only need to estimate the maximum term in
the summation. We have

T 1 > Tk > ﬁj’ug/s«kl
P\ ) s T R R =0

where the last inequality follows by taking k = %Ts/ st1 and we also

use the fact that
T Tk
> —,
k]~ kk

1
regi(Dy) > %Ts/s-i-l _ Q(TS/S-H)

Therefore, we have

which completes the proof. O

To see why Theorem 5.16 implies a lower bound for f(w,x) =
|(w,x)| with d > T, as in Example 5.4, we take w,x € B2 (1) (i.e., with
d =T) and define x; = e; with e; being the standard base of RT that
takes value 1 at position ¢ and zeros otherwise. Note that the functions

of Hy with f(w,x) = |(w,x)| restricted on x” is exactly Dy. Then

regy (M) > regh(H) > regip(Ds) > Q(T7/7)

and this is a matching lower bound of Example 5.4. Note that, it is
proved in [54] that for function f(w,x) = %, one can achieve the
regret of form O(v/T)!. Example 5.4 implies that the generalized linear
functions of form f({w,x)) can have different regrets with polynomial
gap even with a simple shift on the value (though they have the same
covering number!).

5.4.1 Tighter Lower Bounds for Generalized Linear Functions.

We now provide additional lower bounds through the fixed design
regret. As we have demonstrated in Theorems 5.10 and 5.16 that lower
bounds can be derived by selecting some appropriate x! that maximizes
ri(H | xT), where we only choose x! to be some combinations of the

TA Q(\/T) lower bound for d > /T can be derived from Theorem 5.10, recover-
ing [54, Lemma 8].
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standard base of R?. In this section, we present examples where a more
sophisticated selection of x” leads to better lower bounds.

The following theorem shows that the leading constant 1 in The-
orem 5.6 holds even for generalized linear functions with Lipschitz
transform function:

Theorem 5.17. For any s > 1 and d < TS/(S“)/log T, there exists a
1-Lipschitz function f : [0,1] — [0, 1] such that for hypothesis class:

Hy ={f((w,x)):w e Bg(l)vx € Bg/(s—l)(”}v
we have

* T
regr(Hy) = dlog (d(s+1)/5> —O(dloglogT).

The proof of Theorem 5.17 is based on the following technical lemma,
which can be viewed as a correlated version of Lemma 5.8.

Lemma 5.18. There exists a binary sequence by, bo,- - ,bor € {0,1}
such that for any ¢ # j € [T] we have

|

T
> Ubigs # bjey >
t=1

Proof. We use the probabilistic method to construct sequence b*7. To
do so, we select B?T uniformly at random from {0,1}?? and show
that the event of the lemma happens with positive probability. For
any i < j € [T, we construct an i.i.d. sequence Xo, -+, X7/p_; with
uniform distribution over {0, 1} such that:

-1 T/2—1
Y UYBiyt # Bji} = Y Xi
t=0 t=0

To do so, we maintain an index set I and a set X of random variables,
initial 7, X = () and ¢ = 0. For each ¢ € [T — 1], if the index i + ¢ € I,
we remove ¢ + ¢ from I and continue to ¢t + 1; else, we add the indicator
1{Bit+ # Bj4++} to X and j +t to I and continue to ¢t + 1. Clearly all
the random variables in X are mutually independent and distributed
uniformly over {0, 1}, since we add the indicator to X only when there
is no overlap on the indexes and B?” are i.i.d. random variables (notice
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that if 4 +¢ & I then j 4+t also does not appear in the previous indexes,
since ¢ < j). We claim that |I| > T'/2. This follows from the fact that
the conflict period must not be more than the non-conflict period. The
lemma now follows by Chernoff bound, to show that 3>r/c ' X; tightly
concentrates on 7'/4 and a union bound on all pairs (i, j). O

Proof of Theorem 5.17. We partition the x” into d parts each of length
T/d (assume w.l.o.g. that d divides T' 2), and denote K = T/d. For
the ¢th part in the partition, we will select the K features of form
x1€;,- -+ ,TKe;, where z; € [0,1] and e; is the standard base of RY with
position ¢ being 1 and zeros elsewhere. Note that all of the parts in the
partition have the same scalars xjs but different vector e;. Clearly, the
value of f({w,x)) with x in the ith part depends only on w;, where wj is
the ith coordinate of w. Since w € B%(1), we may assume that each w;
takes values in the full range [—d~'/*, d—1/%] and selected independently.
Therefore, it is sufficient to construct a function f : [0,1] — [0, 1] such
that the class

Q= {f(w-z):we[-dV*d "V, ze[0,1]}

has large regret.

Let v € [0, 1] be a small real number depending on K that is to be
determined later. For any number ¢ < 1/v, we define z; = (1 — )L
Let Z = {2z :t < 1/v}. We now select the z1,--- ,xx to be elements
in Z such that each repeats at least |yK | times (there can be some
elements in Z that repeat more than |yK | times). We also define a
sequence z, with t < 2/ such that z, = d~/%(1—~)*~. We observe that
2y — 24| > d7 Y e73 -y for all ¢ < 2/, since (1 — )7 ~ e~ for
small enough. For any number ¢ < 1/, we define wy, = d~1/5(1—~)"! €
[*d_l/s, d—l/s].

Let M = [1/v] and b*™ be the binary sequence as in Lemma 5.18
with T'= M. Define f to be the function over zjs with ¢ < 2/, such
that f(z)) =0if by = 0 and f(z]) =d~/*-e=3 .5 if by = 1. Clearly, f is
1-Lipschitz over the z;s. By Lemma 5.18, for any w; and w; as defined
above with i # j < 1/~, there are at least M /16 positions ¢ < 1/ such

2Otherwise, we round T to be some T’ < T that is divisible by d, this only incurs
a O(d) regret loss.
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that f(w; - 2) take all 0s and f(w; - ) take all values d~1/*-e™3 .5 (or
vice versa). Note that, any of the w; defines a product distribution over
{0,1}¥ such that each coordinate t < K is an independent Bernoulli
random variable with parameter f(w; - z;). Since each z; appears least
|7K | times in the z4s, we have the probability of wrongly identifying
the source (of the product distribution) with parameters w; and w;
being upper bounded by

(1—d V. e3. ) MO 14K] < o7/ eTI (K —1/7—7K)/16

Taking v = 64 - €3 - (d'/* - log K) /K and applying a union bound on
all the pairs w;,w; (there are at most K 2 such pairs), we can make
error probability upper bounded by 1/2 for sufficiently large K. We
now verify that v — 0 as K — o0, this is guaranteed by our assumption
that d < 7%/ (11 /log T. By Lemma 5.7, we have

regi(Q) > log(K/(d"/*log K)) — O(1).

Since K = T'/d and each of the parts of the partition of x” are inde-
pendent, we have

T
regr(H) > d - regp(Q) > dlog (d(sﬂ)/s> — O(dloglogT).

Finally, by [49, Theorem 1], we can extend f to the whole set [0, 1]
while keep the Lipshitz condition. O

Remark 5.5. Note that the condition d < T°/**1) cannot be relaxed
(upto poly-log factors in general) by Example 5.4. Our results in Theo-
rem 5.17, Theorem 5.5, and Example 5.4 imply an interesting threshold
phenomenon (for the generalized linear functions with worst case Lip-
schitz transform function), i.e., when d < T(/5t) =€ with € > 0, the
regret grows as O(dlogT), while for d > Ts/5%1 the regret grows as
O(T*/5*1). Moreover the leading constant is exactly 1 for the dlogT
term if d is sub-polynomial w.r.t. T (e.g., d = e\/@).

5.4.2 Additional Large Classes.

In this section we consider a general (including non-parametric) class

H = {h e 0,150 : vxy, x5 € BYL), |h(x1) — h(x2)| < ||&1 — 2a||s}
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of all Lipschitz functions mapping from a unit ¢, ball to [0, 1]. We also
assume that the Lipschitz condition is under the norm ¢, as well 3. The
following theorem establishes a lower bound for such function classes
(a matching upper bound — up to poly-log factors — can be derived
using Theorem 5.3 and the classical uniform covering numbers as in [55,
Lemma 5.2], see also [46]).

Theorem 5.19. For any d,T,s > 1 such that d < logT, we let H =
{h€]0,1]55M : vx;, x5 € BL(L), |h(x1) — h(x2)| < ||z1 — 22||s}. Then

regip(H) = QT
Moreover, if d > Q(log T'), then reg}.(H) > Q(T).

Proof. Let M be a maximum packing of B4(1) under ¢s norm with
radius T~", where r = dlel‘ Standard volume argument yields that:

M| > T

Note that the packing number is independent of s, since we are packing
a £ ball under the same £, norm. Assume w.l.o.g. that |[M| = |T%].
We now select x? to be all the elements in M such that each of them is
repeated at least |71~ | times in x. We now select a class F C H of
functions that map M — {0,7~"} such that any two functions differ
by at least |79 /4| elements in M. By Lemma 5.8, we know that there
are at least 27"/8 such functions. By removing some functions, we may
assume that there are L2TdT/ 16] functions in F.

9

(1- T—r)LT“dTJ-LTdT/M/? < e TTTI LT /4] /2 < —(1/8—0(1) T

where we used the fact that each element in M repeats at least |71~ |
times in x” and d < log T. In order for a union bound over all pairs in
F to work (there are at most 27"/8 guch pairs), it is sufficient to have
(since 2 < e):

T /8 < T8,

This holds when r = ﬁ. Therefore, by union bound, we have for

sufficient large T', one can identify the sources in F with error probability

3Note that our technique can be generalized to cases when the Lipschitz conditions
are defined in a different norm.
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upper bounded by % Invoking Lemma 5.7, we conclude that
g () > regi (F) > 57051 ~log(2).

By definition, the functions in F restricted on M are 1-Lipschitz under
¢s norm. By [49, Theorem 1], we can extend them to the whole set
of B%(1) while keeping the Lipschitz property. The last part of the
theorem follows from the fact that when d = clogT" for any constant c,
we have T—1/(1+d)  ¢=1/c We can therefore let ¢ be small enough so
that e~ /¢ < %, which will allow our argument above to go thorough
(by reducing the size of F by a constant on the exponent) and result
in a regret bound Q(7%(@+1)) > Q(T). Note that regret is monotone
increasing according to d, thus the result follows. O

5.5 Bibliographical Notes

The analysis in this chapter relied on information-theoretic tools, includ-
ing universal source coding for lower bounds [2]-[5], [7], [17], [19], [39]
and sequential covering for upper bounds. In the literature on online
regression under logarithmic loss, much attention has been devoted to
logistic regression. The work [56] studied pointwise regret in the proper
learning setting, where the learner does not observe x;, showing that
the regret is ©(T/3) for d = 1 and O(\/T) for d > 1. The regret for
logistic regression was shown to grow as O(dlog(7'/d)) in [50], and this
was extended in [45]. Matching lower bounds were established in [47].
Precise asymptotics for the fixed design minimax regret appeared in [42],
48] for the regime d = o(T"/3).

The study of logarithmic loss for finite expert classes H dates back to
Vovk’s mixability framework [57], [58], where the aggregating algorithm
achieves regret of order log |H|. See [9, Chapter 3.5, 3.6] for an overview.
The extension to infinite classes was treated in [9, Chapter 9.10, 9.11],
where regret bounds were obtained using covering numbers and a
two-stage prediction strategy. For Lipschitz parametric classes with
values bounded away from {0, 1}, the regret was shown to be of order
d/2log(T/d), while a hard truncation argument yields a bound of order
2dlog(T'/d) when values approach {0,1}. These results apply to the
fixed design (simulatable) setting.
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The sequential case was addressed in [54] using sequential covering
numbers developed in [59]. In [46], bounds similar to those in Theo-
rem 5.3 were derived using the self-concordance of the logarithmic loss,
though obtained non-constructively. In [60], smoothing was used to
address the unboundedness of logarithmic loss under i.i.d. features, with
results applicable to average-case regret.

The chapter followed the framework developed in [61] and [62] (see
also recent [23]).
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Minimax Regret with Lipschitz Losses

In this section, we present results on the minimax regret when the loss
function is both bounded and Lipschitz. Furthermore, we extend our
analysis beyond finite hypothesis classes H, as considered in Theorem 3.4.
The main tool used throughout this chapter is the notion of sequential
covering, introduced in Definition 5.1.

6.1 Absolute Loss

We start with the absolute loss. Let Y = {0,1} and Y = [0,1], the
absolute loss function is defined as

(@ y) = 19—yl

Observe that [ — y| = Ey/gem(y) [1{y" # y}], i.e., it measures the ez-
pected miss-classification loss when sampling from a Bernoulli source of
parameter .

We recall from Theorem 3.4 that for a finite class H the minimax
regret of H under the absolute loss is upper bounded by

regr(H) < O(y/Tlog [H]),

which is achieved by the (generalized) EWA Algorithm 3.3.

71
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We now consider hypothesis classes H that are not finite and address
the question: under what conditions are such classes learnable? We begin
with the following example.

Example 6.1. Consider the following class of threshold functions:
HHres .= (hy(x) = o >a} :a,z € [0,1]}.
For any learner ®, we construct the following strategy for Nature:
1. At every step ¢, we select label y; € {0, 1} such that |y — 9| > 3.

2. Select instances x; from the set of dyadic rationals, starting with
X1 = % and updating (according to learner’s prediction §;_1) as:

X1+ %7 if gtfl Z 057

Xt =
Xi—1 — %, else.

This strategy ensures that the cumulative loss incurred by the learner
is at least 7'/2, while for all ¢ < T, the threshold function hy, , with
parameter a = X741 satisfies hy,. , (x;) = y;—that is, it incurs zero loss.
Therefore, we conclude that

regr(H™") > T/2.

To make the argument even clearer, we illustrate the adversarial
strategy using a tree-based process. Let the learner’s prediction sequence
be {0, 1, 1}. The strategy employed by Nature proceeds as follows:

X1

15
/ : \
3 1
4 4
7 5 3 1
8 8 8 8
B[ [ [ o[ ][s][s][
16 16 16 16 16 16 16 16

When x5 shows up we go down the tree to see:
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X1
1
0 2 1 ‘
1 4
SN SN
L4 5 N 1
8 8 8 8
[\ [\ [\ [\
15 13 1 9 7 5 3 1
16 16 16 16 16 16 16 16
Upon seeing x3 we ended up with the following:
X1
1
0 2 1 ‘
1 1
SN AN
7 5 4 1
8 8 8 8
[\ [\ [\ [\
15 13 1 9 7 5 3 1
16 16 16 16 16 16 16 16

Finally, when x4 arrives we ended up at the following:

X1
1
/ 2 \
X2
3 1
4 0 4
/ \ xg/ \
7 5 3 1
8 8 8 8
[\ [N Y [\
B[] [ s ][3][ 2
16 16 16 16 16 16 16 16

The function Ay, (x) := 1{x > £} consistent with all true labels, but
the learner errs at every step.
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6.1.1 Shattering Trees and Littlestone Dimension

We have shown that even for simple threshold functions, achieving
sublinear regret is not possible. This naturally raises the question: What
intrinsic structure of H leads to this failure?

To address this, we introduce the concept of shattering trees, pre-
viously discussed in Section 5.4. Let H C {0,1}* be a binary-valued
hypothesis class. A X-valued binary tree of depth d is a mapping

T: U{O,l}i — X.
i<d
We say that 7 is shattered by H if for every €@ € {0,1}%, there exists
h € H such that
Vi<d, h(r(e) =¢.
Note that the tree formed by the dyadic rationals is shattered by the
class Hthres,

We now observe a simple fact:

Lemma 6.1. For any binary-valued class H C {0, 1}%, if there exists a
X-valued binary tree of depth d that can be shattered by H, then:

regp(H) > %min{d,T}.

Proof. Indeed, it is enough to select the labels opposite to learner’s
prediction, and the instances by following the shattering tree 7, similar
to the threshold function case as discussed in Example 6.1 O

From the discussion above, it should be clear that we need some
constraints on the class H for it to be learnable. We are now ready to
introduce the Littlestone dimension.

Definition 6.1 (Littlestone Dimension). Let H C {0,1}* be a binary-
valued hypothesis class. The Littlestone dimension of H is defined as
the maximum number d such that there exists a X-valued binary tree
of depth d that can be shattered by H.

We will denote Ldim(?) as the Littlestone dimension of H. It is clear
from our previous discussion that regp(H) > 1 min{Ldim(#), T}. There-
fore, Littlestone dimension forms an intrinsic barrier for the minimax
regret.
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Example 6.2. We now present several examples of hypothesis classes
‘H and discuss their corresponding Littlestone dimensions.

1. For the threshold functions H""®s, we have Ldim(H""es) = oo.
2. For any finite hypothesis class H, it holds that Ldim(H) < log |H|.

3. Consider the class of indicator functions defined by
H = {hy(2) ;== {z =a} : x,a € [0,1]}.
Then Ldim(#™) = 1.

We have shown that the Littlestone dimension forms a natural lower
bound for the minimax regret. Can we achieve an upper bound as well?

Algorithm 6.1 The Standard Optimal Algorithm (SOA)

1: Initialize H©) « #

2: for each time step t =1,2,... do

3: for each y € {0,1} do

4 HP — {he HED : h(xy) =y}

5 end for

6 Predict §; < arg maxye{o,l}{Ldim(Hl(f))}
7 Receive true label y;
8

9

: Update H®) «+ ’Hz(,?
. end for

Lemma 6.2. For any data x”, 3 that is realizable w.r.t. a binary-valued
class H, i.e., 3h* € H such that Vt < T, h*(x;) = y, the SOA predictor
enjoys the following mistake bound

T
S 1 # e} < Ldim(H).
t=1

Proof. At each round t, if the SOA predictor errs §; # v, it updates
to ’Hg) = {h € H® : h(x;) = y;}. By the definition of Littlestone di-
mension, minye{o,l}{Ldim(Hg_l))} < Ldim(H 1) —1, so each mistake
decreases the dimension by at least one. Since the initial dimension
is at most Ldim(?) and cannot become negative, the total number of
mistakes is at most Ldim(H). O
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6.1.2 Sequential Cover

Note that Lemma 6.2 holds under the realizability assumption. To
extend our analysis to the agnostic setting, we recall the notion of a
sequential cover, as introduced in Definition 5.1, and now specialize it
to binary-valued hypothesis classes.

Definition 6.2 (Sequential Cover). Let H C {0,1}? be a binary-valued
class, and G C {0,1}" be a class mapping X* — {0,1}. We say that
the class G sequentially covers H up to step T if, for any xT € X7 and
h € H, there exists g € G such that

YVt < T, g(x') = h(x).

We observe that the cover happens locally, depending on any given
x!', unlike the classical uniform cover where each h is covered by a fixed
g. Sequential cover allows the covering function g to depend on x” as
well. Furthermore, infinite classes H can be sequentially covered by a
finite class G. Indeed, consider the class H" := {h,(z) := 1{z = a} :

x,a € [0,1]}. For any ¢ < [T] U {0}, define the sequential function:

: {t>idiand x; =x;}, if i #0
gi(x") = .
0, ifi=0

The class G := {g; : i € [T] U{0}} sequentially covers ™.
The next lemma is the key to proving the final bounds on regret.

Lemma 6.3. Let H C {0,1}* be any binary-valued class. If there exists
a predictor for H that achieves mistake bound errp in the realizable
case, then there exists a sequential cover G of H up to step T such that

errp

T
log |G| <log ( ) < Oferrp - logT).

= \!
Proof. Let ® achieve errr mistakes for H in the realizable case. For any
I C [T, we recursively define the sequential function

g (Xt) _ q)(xtvgl(xl)y"' ,gz(xt*l)), if t ¢I
' 1—o(xt, gr(x), - ,gr(x!™1), ift el
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The class G := {g7 : I C [T], |I| < errp} sequentially covers H, since for
any x’ and h we can pick I being the time steps where ® errs. Finally, we
have |G| < "7 () by counting the size of {I C [T]: |I| <errr}. O

This leads to the main result of this section, which establishes tight
minimax regret bound in the agnostic setting.

Theorem 6.4. For any binary-valued class H C {0,1}* with finite
Littlestone dimension Ldim(#), the minimax regret of H satisfies

Q(y/Ldim(H) - T) < regy(H) < O(/Ldim(H) - T log T).

Proof. The upper bound is easy. From Lemma 6.2 we know that the
class admits a mistake bound of Ldim(H) in the realizable case. This
implies, by Lemma 6.3, a sequential cover G of size

log |G| < O(Ldim(H) - logT).

Applying the EWA algorithm over G and using the property of sequential
covering, we deduce, from Theorem 3.3, the regret upper bound

regr(H) < O(y/Tlog|g]) < O(y/Ldim(#) - TlogT).

The lower bound is more intricate. We first prove a simpler Q(v/T)
lower bound and assume that [#| > 2. Taking any x € X" such that
there exist hg, hy € H so that h;(x) = i. We now select y” uniformly
over {0,1}" and select x; := x for all t < T. We have for any prediction
rule ¢ that E,r {Z;le |9 — yt” = % Let k be the number of 1’s in yZ.
We have

T
inf h(x) — y;| = min{k, T — k).
il D210 = ] = minf }

Let ¢ be uniform over {1}, we have Z?zl ¢ distributed equally as
2k —T. Note that |k — | = £ —min{k, T — k}, we have by Khinchine’s
Inequality (Lemma 2.13) that

1

— —VT.
V8

Therefore, the regret is lower bounded by +/7'/8.

E[min{k, T — k}] <

| N
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The Q(y/Ldim(H)T) lower bound follows by a more careful selection
of the x”". Assume that 7 is divisible by Ldim(#) (otherwise we truncate
T). We partition x”,y” into Ldim(#) blocks each of size Ld+(ﬂ), and
denote k; as the number of 1’s in the i’th block of y”.

Let 7 be a X-valued binary tree of depth Ldim(H) that can be
shattered by H. We now select y” uniformly over {0,1}7 and select x*
by traversing 7:

1. We assign the same value within each block of x”, with the first
block being the value of the root v; of 7.

2. Let v; be the node in 7 for the i’s block. If k; > W we set
vit1 being left child of v;, and set to the right child otherwise.

By definition of shattering, 3h € H that achieves min{k;, ﬁ(%) —k;}
losses for all ¢ simultaneously. The regret is then lower bounded by

Q(Ldim(#) - /T/Ldim(H)) = Q(,/Ldim(H)T)

which completes the proof. O

6.2 Minimax Regret for Real-Valued Class

In this section, we consider classes of real-valued functions H C R¥.
To analyze their learnability, we begin by introducing the notion of
sequential Rademacher complezity.

6.2.1 Sequential Rademacher Complexity

We start with the definition of sequential Rademacher complexity.

Definition 6.3 (Sequential Rademacher Complexity). For any real-valued
class H C RY, we define the sequential Rademacher complexity of H as

T
sRadr(H) = supE.r |sup Z eth(t(e)],
T heH t=1

where 7 : UzT:O{_]‘7 +1}" — X runs over all X-valued binary trees of
depth T, and €’ is sampled uniformly over {—1,+1}7.
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Note that the sequential Rademacher complexity is similar to clas-
sical Rademacher complexity, except that the optimizing is over trees
instead of sequences.

Example 6.3. Let H'" := {hy(x) = (w,X) : w € B} be the class of
linear functions with weight w lying in a unit Ls ball. Let X := B as

well, we have
sRady(H'™) < VT.

Indeed, fix any tree 7 and denote x; := 7(¢!~!), we have:

T
sRadr(H"™) = supE,r [ sup Zeﬂw,xﬂ)}

W€B2 t=1
T
=supE.r | sup { w, Z €1X¢t)
T wE B> t=1

T T
<supE.r <Z €tX¢, Z ftXt>7
T t=1 t=1

T T
<sup, | E.-r <z €1X¢, Z etxt>, by Jensen’s inequality
T t=1 t=1

<sup |E.r
T

T+ Z €ie;xI x|, by [|[xtfl2 <1
iAj<T

pu— ﬁ
as expected.

We now introduce a general approach for reducing the minimax
regret to sequential Rademacher complexity. From Theorem 4.2, we
know that the minimax regret can be reduced to

rT T
regr(H) =supE Z inf E¢[£(gt,y¢)] — inf Zg(h(xt)>yt)]
poo D gey her i3

=suplE |sup
po |heH

r T T
< supE |sup { Ee[(h(xt), y1)] — Zf(h(Xt),yt)H :

po |heH
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Denote h'(z;) := £(h(x;), y:) where z; = (x;, ;). We obtain the following
upper bound

T
supE [sup {z Eu[h(z)] - h%zt)}] .

2] heH =1

We now introduce a tangent sequence z,--- ,z/, such that z} =
(x},y;) with x; = x; and y; being an i.i.d. copy of y; conditioning on

xt, 1. The upper bound can be expresses as

supE,r
o

T
sup {Z E[h(2))] — hg(zt)}] , by definition of z'*
heH t=1

T
<supE,rE,r |sup Z ht(z}) — h*(z) ¢ |, by supE < Esup
12 heH t=1

@ Sup B, By, 1 Eep -+ B By yr Ee lsup {Z e/ (h(2}) — hZ(Zt))H
H heH t=1

(t) 4
< 2supEx,Ey E, - - - Ex, Ey Ee, [sup {Z ethe(zt)H
H heH t=1

where ¢; is uniform over {£1} and is (conditional) independent of v, y;.
Here (a) follows by the conditional symmetries of y;, y; and (b) follows
by sup(A + B) < sup A + sup B and symmetries between v, y;.
Note that, the following operator inequality holds (by E < sup):
Ex,Ey Ee, -+ Ex, Ey Ee < sup Ee, -+ sup Ee,.
X1,Y1 XT,Y1r

By Skolemization as in Lemma 2.2, the upper bound then equals

T
sup {Z ethf(7(6t1))}] ,

heH | i

T
sup E., -+ sup E.. lsup {Z ethe(zt)}] =supE.r

X1,Y1 XT,YT heH | 15

sRad(H?)

where 7 runs over all (X x ))-valued binary trees.
Putting everything together, we have proved the following lemma.

Lemma 6.5. The following holds
regr(H) < 2 - sRadp(#Y),
where H’ := {¢(h(x),y) :h € H} € PEXY),
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To relate the sequential Rademacher complexity to the minimax
regret, we need the following Lipschitz contraction inequality for se-
quential Rademacher complexity from [24, Lemma 12].

Lemma 6.6. Let H C R and ¢ : Rx Z — R. If for all z € Z, ¢(, z)
is a L-Lipschitz function, then

sRadp(¢(H)) < O(L -10g>? T) - sRadp(H),
where ¢(H) = {z — ¢(h(z),z) : h € H}.

6.2.2 Regret via Sequential Rademacher Complexity

Now we are in the position to present general bounds for minimax regret
when the loss function is bounded and Lipschitz.

Theorem 6.7. Let Y =) 1= [0,1] and H C Y¥ be a real-valued class.
If the loss function ¢ is bounded, convex, and Lipschitz in its first
argument, then:

regr(H) < O(sRadr(H)).

Moreover, for the absolute loss (4, y) = |§ — y|, we have
regr(H) > Q(sRadp(H)).

Proof. The upper bound follows directly from Lemma 6.6 and Lemma 6.5.

We focus now on the lower bound. Let 7 : U ({0,1}* — X be any
X-valued binary tree of depth T'. We define a specific distribution p
over (X x V)T as follows:

1. Sample y” uniformly from {0, 1}7;

2. Let x; = 7(y*1).

Note that inf, 5 Eef| — ] = 3, since y; is uniform over {0, 1} condi-
tioning on x!,y'~!. That is the Bayesian optimal risk equals % More-
over, |h(x¢) — ye| = eth(xt) + (1 — €)/2, where ¢, =1 — 2y, € {—1,+1}.
Therefore, by Theorem 4.2, we have

T

T . 1—c¢
3~ inf (eth(xt) t— tﬂ

heH —1

regr(H) > E r

=E.r

T
sup Z Eth(Xt>1 ,

heH 1
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where the equality follows by E,,[(1 — €;)/2] = 3 and changing measure
to €. Since T is selected arbitrary, the inequality remains holds when

taking sup,. We conclude that reg;(#H) > sRadr(H), as needed. O

It should be noted that the logarithmic factor in the upper bound
can be improved by a constant factor via a direct minimax switching
analysis of the regret (without going through Lemma 6.5); see [26].

6.2.3 Minimax Regret for General Lipschitz Loss Functions

We have shown in Theorem 6.7 that for Lipschitz losses, the minimax
regret is tightly characterized by the sequential Rademacher complexity.
To obtain concrete bounds, we need to bound the sequential Rademacher
complexity as well via the sequential fat-shattering dimension, already
introduced in Section 5.4.

The sequential a-fat-shattering dimension sfat,(#H) for a class H C
[0, 1] is defined as the maximal number d such that H can a-fat-shatter
certain trees 7, s of depth d. We recall that in Section 5.4 we also denoted
this dimension as d(«) but in this section we rather use sfat,(H) to
show its dependence on H.

To proceed, we recall the real-valued sequential covering as intro-
duced in Definition 5.1.

Definition 6.4 ((Real-valued) Sequential Cover). Let # C [0,1]* and
G C [0,1]*" be a class mapping X* — [0, 1]. We say that the class G
sequentially a-covers H up to step T if, for any x’ € X7 and h € H,
there exists g € G such that

Yt < T, |g(x") — h(xs)] < a

Similar to the binary-valued case, we can bound the (real-valued)
sequential cover via the sequential fat-shattering dimension as follows:

Lemma 6.8. For any class H C [0, 1] with sequential a-fat-shattering
dimension sfat, (), there exists a sequential a-cover G, of H such that

log |Ga| < O(sfat, 3(H)),

where O hides poly-logarithmic factors in a and 7.
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Proof. Let K = {2ia : i < [1/(2)]} be a discretization of [0, 1] such
that for any a € [0, 1], there exists b € K where |a — b| < a. For any
h € H, we define a function A’ € K% such that

W (x) = arg min |A(x) — 5.

Let H' = {h' : h€ H} C K¥. It is easy to observe that any sequential
2a-cover of H' implies a sequential 3a-cover of H. Our primary goal
is now reduced to bounding the 2a-covering set size of H’'. To achieve
this, we introduce the following concept:

1-Shattering Dimension: The 1-shattering dimension of #H' is
defined as the maximum number d such that there exist a X-valued
tree 7 and a K-valued tree s, both of depth d, such that Ve? € {0, 1}d,
I’ € H' we have:

1. If ¢ = 0, then A/(7(e!71)) < s(ef™1) — 20
2. If ¢, = 1, then A/ (7(e71)) > s(ef™1) + 2a.

We denote FAT(H') as the 1-shattering dimension of H'. It is easy to
observe that FAT;(H') < sfato(H).
We now introduce the M-SOA algorithm:

Algorithm 6.2 The M-SOA Algorithm

1: Initialize the running hypothesis class: H(©) « H/
2: fort=1to 1 do
3: for each f € K do
Define H' + {h € HEV : h(x;) = B}
end for
Predict §; < arg maxgeg {FAT1 (Hg))}
Observe true label y;
if |9 — y¢| > 2a then
Update H®) « Hg(ft
10: else
11: Keep H®) « (-1
12: end if
13: end for
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Claim 1. The M-SOA algorithm satisfies the following realizable risk

bound:
T

sup sup Z |9 — W (x¢)| > 2a} < FAT(H).

xT WeH 153
Proof. At each time step ¢ such that |g; — y| > 2a, the algorithm
updates the hypothesis class by setting H®) = ’Héi) C H =D, Since the
prediction §; was chosen to maximize FATl(”Hg)) over 3 € K, and the
prediction was incorrect by more than 2c, this update necessarily elimi-
nates hypotheses that could otherwise achieve a higher fat-shattering
dimension. Therefore, FAT{(H(®)) decreases by at least 1 at each such
step. Since the initial class #(*) = #’ has fat-shattering dimension
FAT{(#H'), the number of mistakes of this type is at most FAT(H'). O

For any I C [T] and {8 }ier € K/, we define a sequential function
by simulating the M-SOA algorithm with the following modification at
steps 8-12:

1. If t € I, update H(b) — H,(Btt);
2. If t ¢ I, proceed as in M-SOA.

Let G denote the collection of all such sequential functions with |I| <
FAT1(H). We now observe that the class G sequentially 2a-covers H/,
and
log |G| < O (FATy (') log(|K|T))

Here, the covering property follows from the risk bound in Claim 1 and
a similar argument as in Lemma 6.3. While the upper bound on the
size follows by counting the number of such sets I and corresponding
choices of {f;}ier.

The lemma follows by combining all the preceding results. O

We conclude this section with the following theorem, which relates
all of the concepts introduced.

Theorem 6.9. Let Y = ) := [0,1], and let # C [0,1]¥. Assume the
loss function ¢ is bounded, convex, and Lipschitz in its first argument.
Then, the following statements are equivalent for given p > 2 (where 0
hides poly-logarithmic factors in o and T):
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1. The Sequential Fat-Shattering Dimension sfat,(H) = ©(a~P);

2. There exists a Sequential a-cover G, with log|Ga| = ©(aP);
~ p—1
3. The Sequential Rademacher Complexity sRadr(H) = (T » );
~ —1
4. The minimaz regret regp(H) = O(T pT)

In this section, we have shown that 1 = 2 (Lemma 6.8) and 3 < 4
(Theorem 6.7). The remaining implications are more technical and are

addressed in [24]. A direct implication 2 = 4 can be obtained via the
Pt

~ 1
EWA algorithm, yielding a regret bound of regp(H) < O(T»+2). The

~ —1
tighter bound of O(TPT) follows from the use of chaining, through the
path 2 = 3 = 4. We omit the full proof and refer the reader to [24].

6.3 Bibliographical Notes

The Littlestone dimension was introduced in [63] (see also [64]), where
the Standard Optimal Algorithm (SOA) was presented. It has since
become a fundamental tool in online learning. The generalization to
the non-realizable case was first studied in [35]. Extensions to real-
valued function classes and the introduction of sequential Rademacher
complexity were developed in [24], [26].
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Expected Worst Case Minimax Regret

In this chapter, we study the problem of online learning in the hybrid
setting, where features are drawn from a general unknown stochastic
process while labels remain adversarial. This contrasts to the worst-case
minimax regret considered in previous chapters and offers a broader
and more relaxed modeling of learning environments.

The central performance measure in hybrid online learning is the
expected worst-case minimax regret, introduced in (4.4) and recalled
below in (7.1). To simplify notation, we will abbreviate the expected
worst-case minimax regret as 7p(H) := régp(H). Additionally, we write
i (H | xT) :=regh(H | xT) and rr(H) = regp(H) (worst case regret),
as previously discussed in Chapter 4.

7.1 Problem Formulation

Let X be a feature space, Y be the true label space, and ) = [0,1]
be the space of outputs of the learner. We denote by H C V¥ a class
of functions X — Y. For any time horizon T, we consider a class
P of distributions (i.e., random processes) over X7. We consider the
following game between Nature and the predictor. At the beginning,
Nature selects a distribution ¥” € P and samples an input sequence

86
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xT ~ vT, where xT € XT. At each time step t < T, Nature reveals

the t-th sample x; of x” to the predictor. The predictor then makes
a prediction §; € ) using a strategy ¢; : Xt x Y= — y potentially
using the history observed thus far, that is, §; = ¢:(x!,y'~!). After the
prediction, Nature reveals the true label y; and the predictor incurs a
loss £(§, y) for some predefined convex loss function £ : Y x Y — [0, 00).
We are interested in the following expected worst-case minimax regret:

T T
(Z (Dt yt) — ﬁé‘izg(h(xt%%)ﬂ .
t=1 t=1
(7.1)
We note that the expected worst-case minimax regret 7r(#, P)

7r(H,P) = inf sup Eyr_,r [sup
o yTep yT

recovers the sequential and fixed-design minimax regrets discussed in
Chapter 4 by selecting an appropriate distribution class P.

We also introduce the following expected average case minimax
regret:

T
rp(H,P)=inf sup Eyr.,r [SUP (Zf@t,yt) - E(h(xt),yt)ﬂ

T YT eP heH yT' \4=1
(7.2)

where the main difference with 77(#, P) is the position of sup;,.
The following observation is straightforward to prove and demon-
strates the relationship among different notions of regret.

Proposition 7.1. If P is a class of all singleton distributions over X7,
then 77(H,P) = regp(H) (worst case regret) for all H. If P is the
singleton distribution that assigns probability 1 for x*, then 77(#H,P) =
rin(H | xT). Furthermore, #7(H,P) > 7r(H,P), for any H and P.

Example 7.1. To understand differences between 71 and 7, we consider
the following example. Let # be the class of all functions [0, 1] — {0, 1}
that take value 1 on at most 1" positions and 0 otherwise. Let v be the
uniform distribution over [0, 1], and ¢(9t, y:) = |9+ — y¢|, where g € [0, 1]
and y; € {0,1}. We will denote by v®7 the i.i.d distribution of length
T with marginal v. We have 77 (H,v®") = 0, since for any h, w.p. 1 we
have h(x;) = 0 for all ¢ € [T], meaning that a strategy that predicts 0
all the time incurs 0 regret. However, we also have 77 (H,v®T) > % To
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see this, we choose y? € {0,1}T uniformly at random and observe that
any strategy will make at least % accumulated losses, however, for any
xT" and y7, there exists h € H such that Vt € [T], h(x;) = y.

7.2 Stochastic Sequential Cover

Let X* be the set of all finite sequences over X'. We introduce one of
our main technical ingredients, i.e., the stochastic (global) sequential
covering, as follows:

Definition 7.1 (Stochastic sequential cover). We say a class G of functions
X* — [0,1] is a stochastic (global) sequential cover of a class H C [0, 1]*
w.r.t. the class P of distributions over X7 at scale @ > 0 and confidence
§>0,if forallv” € P

Prr,r [Fh € HVg € G It e [T] st [h(x) — g(x')| > a] < 6.

We define the minimal size of G to be the stochastic global sequential
covering number of H.

Note that the distribution class P in Definition 7.1 is completely
general and recovers the (classical) sequential covering discussed in
Chapter 6 if P is the class of all singleton distributions over X7,

We first establish the following simple (but useful) composition
property of stochastic sequential cover. Let Hy,- -+, Hy, C [0,1]F be
m function classes over the same domain and © be a parameter space
equipped with some norm ||-||. For any function F' : [0,1]" x © — [0, 1]
such that Vzy,zy € [0,1]™, 61,02 € © we have F(z1,01) — F(z2,02) <
Lmax{||z1 — z2||x,||01 — 02||} for some constant L € R*, the F-
composition of Hi, -+ ,H,, and O is defined to be the class:

H={h(x) = F(h1(x), -+ ,hm(x),0) : Vi € [m], h; € H; and 8 € O}.

Proposition 7.2. Let Hy,--- ,H,, C [0,1]% be any classes, © be any
parameter space equipped with norm || - ||, and F' be any function
satisfying the conditions above. If Vi € [m], H; admits a statistical
sequential covering set G; at scale o/ L and confidence §/m w.r.t. distri-
bution class P, and © admits an a/L cover C under norm || - ||, then
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the F-composition class ‘H of Hi, -+, H,, and O admits a statistical
sequential covering set G w.r.t. P at scale a and confidence § such that:

m
Gl < [cI T 1Gil-
i=1
Proof. For any tuple of indices (j1,-- -, jm) with j; € [|Gi|] and 8’ € C,
we construct a function g such that:

g(xt) = F(gj1 (Xt)a 5 99w (Xt)aal)a

where g;;, is the j;th function in G;. The covering set G is defined
to be the class containing of all such functions g. For any function
h € H, there exist hy,--- , h,, with h; € H; and @ € © such that for all
x € X, h(x) = F(h1(x),- - hm(x),0). By union bound and definition of
stochastic sequential covering of G;, w.p. > & over x', for all i € [m)],
there exist g;, € G; such that Vt € [T, |g;;,(x") — hi(x¢)| < a/L. One

can verify that the function g corresponding to (41, ,jm) and 8’ € C
closest to @ under || - || is the desired function that covers h on x', due
to the L-Lipschitz property of F. O

We demonstrate below how F-composition can be exploited to
generate interesting complex classes from simple classes.

Example 7.2. Let © = [0,1]? and H; C {0,1}* be a binary valued
class of finite VC-dimension. If we take F(y,0) = yb; + (1 — y)f2 for
y € {0,1} and 8 € [0,1]?, the F-composition class H C [0,1]% of H;
and © recovers the setup of [65]. We note that in this case the set ©
admits an a-covering set of size O(a~2) under Lo, norm for all a > 0
and F' is 1-Lipschitz in the sense of Proposition 7.2.

Example 7.3. Let © = {1 +--- + 60, < 1 : 0 € [0,1]?} for some
d € Nt and Hy, - ,Hg C {0,1}* be d binary-valued classes of finite
VC-dimension. If we take F(y?,8) = (8,y?) for y¢ € {0,1}¢ and 8 € O,
the F-composition class H C [0,1]% of H;’s and © defines a natural
class. We note that in this case © is a-covered by a set of size a~? under
L1 norm and F' is 1-Lipschitz in the sense of Proposition 7.2. Moreover,
if we take d = 2 and Ho = {1 — h(x) : h € H1} we subsume the setup
of Example 7.2.
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Example 7.4. Let © be empty, X = R? and H; = {h, )(x) = 1{x[i] €
[a,b]} : [a,b] C [0,1], x € R} for i € [d], i.e., H; is the class of indicators
of intervals on the ith coordinate of x. If we take F'(y1,--- ,yq) = H;-izl Ui
for y? € {0,1}¢, the F-composition class H C {0,1}* of H;’s defines
the class of indicators of rectangular cuboids in R and F is 1-Lipschitz.

7.2.1 Upper bounds on regret via stochastic sequential covering

We now prove two general results below that demonstrate how a bound
on the stochastic sequential covering number implies bounds on the
expected worst-case regret 77 in an algorithmic fashion.

Theorem 7.1. Let H be a set of functions mapping X — [0, 1] and
G, be a stochastic sequential covering of H at scale a and confidence
0 =1/T w.r.t. distribution class P. If £(-,y) is convex, L-Lipschitz, and
bounded by 1 on Y for any y € Y, then:

7r(H,P) < ogigfgl {aLT—l— \/ (T/2)1og |Ga| + 1} .

Proof. We run the Exponential Weighted Average (EWA) Algorithm 3.3
on G,. We split the regret into two parts, one that is incurred by the
predictor against G, and the other that is incurred by the discrepancy
between G, and H. For the first term, using Theorem 3.4 we conclude
that with probability 1 on x7:

T T
D UG ye) < Jnf D Ug(x")ye) +1/(T/2)10g |Gal-
t=1 Y t=1

For the second term, we denote by A the event described in the proba-
bility of Definition 7.1. Since Pr[A] < % and £(9,y) < 1 by assumption,
the expected regret contributed by the event A is at most 1. We now
condition on the event that A does not happen. By Definition 7.1, we
obtain Vh € H3g € GVt € [T], |h(xt) — g(x!)| < a. Since ¢ is bounded
by 1 and L-Lipschitz, we have:

T

T
inf /(h > inf V4 t —aolT.
’%{m (h(xt), yt) _glenga; (9(x"),yt) —

The result follows by combining these inequalities. O
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Now we turn our attention to the logarithmic loss.

Theorem 7.2. Let Y = {0,1}, Y = [0,1] and ¢ be the logarithmic loss.
If for all & > 0 there exists a stochastic sequential covering set G, of
class H C [0, 1] w.r.t. distribution class P at scale a and confidence
0= %, then:

7r(H,P) < 0221;1 {2aT 4 log(|Ga| + 1) + log(|Ga| +1)/T + 1}.

Proof. The proof is similar to the proof of Theorem 7.1, but replacing
the EWA algorithm with the Smooth truncated Bayesian Algorithm 5.2
and running the algorithm on G, U{u} with truncation parameter o and
uniform prior, where w is the function that maps to % for all x*. We again
split the regret into two parts, one incurred by the Smooth truncated
Bayesian Algorithm 5.2, and the other incurred by the error of covering.
By Theorem 5.3 the first term is upper bounded by 2a7" +log(|Ga| +1).
For the error term, we note that we have added all % valued functions
u into the expert class when running the Smooth truncated Bayesian
Algorithm. This implies that the prediction rule can only incur the actual
accumulated losses upper bounded by 7'+log(|Ga|+1). Therefore, when
the event A (defined in proof of Theorem 7.1) happens, the expected
regret only contributes (T'+log(|Ga|+1))-Pr[A] < (T'+log(|Ga|+1))/T.
The result follows by combining the inequalities. O

7.3 Stochastic Cover for Binary Valued Classes

This section focuses on the stochastic sequential covering number of
binary valued classes H. We assume that P is the class of all i.i.d.
distributions over X7'; however, our results hold for general ezchangeable
processes [66] over X T as well, i.e., distributions that are invariant under
permutation of the indexes.

7.3.1 Stochastic sequential cover for finite VC-class

Let # C {0,1}* be binary valued class with finite VC-dimension.
We write VC(H) for the VC-dimension of H. We will show that the

stochastic global sequential covering number can be upper bounded

O(VC(H) log? T)

by e w.h.p. using the I-inclusion graph algorithm that
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was introduced in [67]. Without going into the technical details of the
1-inclusion graph algorithm, we can understand it as a function that
maps (X x {0,1})!1 x X — {0,1}, for any given ¢ > 1. For H of finite
VC-dimension and any function ® : (X x {0,1})!"! x X — {0,1}, we
define the following quantity (here, we follow the notation in [67]):

Mo 3(t) = sup sup By [1{@(x"®, h({x"1"V})) # hx,)}] ,
xte Xt heH

where ¢ is the uniform random permutation over [t], we have x7(*) =

{Xa(l)v T ’XU(t)} and h({xg(t_l)}) = {h(xo(l))a ) h(xa(t—l))}' The
main result of [67] is stated as follows:

Theorem 7.3 (Haussler et al., Theorem 2.3(ii)). For any binary valued
class H of finite VC-dimension and for any ¢t > 1, there exists a function
®: (X x{0,1})! x X = {0,1}, i.e., the 1-inclusion graph algorithm,
that satisfies

VC(H)

My #(t) < ;

Our main result for this part is as follows, with the proof presented
below Lemma 7.6.

Theorem 7.4. For any binary valued class ‘H with finite VC-dimension,
there exists a global sequential covering set G of H w.r.t. the class of all
i.i.d. distributions over X7 at scale a = 0 and confidence § such that
for T > €° we have:

log |G| < 5VC(H)log? T + log T'log(1/5) + log T.

The main idea for proving Theorem 7.4 is to show that for the 1-
inclusion graph predictor ®, we have w.p. > 1—6 over the sample x” i
v" the cumulative error is upper bounded by O(VC(H) log T +log(1/4)).
Assuming this holds, one will be able to construct the covering func-
tions in a similar fashion as [35, Lemma 12]. The bound will follow
by counting the error patterns. However, a direct application of The-
orem 7.3 will only give us an ezpected VC(H)logT error bound. The
main challenge follows from the fact that even though the samples x”

are generated ¢.i.d., the predictions made by the 1-inclusion predictor
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are not independent (neither a martingale), and therefore the standard
concentration inequalities do not apply directly.

Our main proof technique exploits permutation invariance of the 1-
inclusion graph predictor, which allows us to relate the cumulative error
to a reversed martingale'. Using Bernstein inequality for martingales
Lemma 2.10, we then establish the following key lemma.

Lemma 7.5. Let & : (X x {0,1})* x X — {0,1} and h: X — {0,1} be
functions such that ® is permutation invariant on (X x {0,1})*. If for
all t € [T] and x' € X! we have:

Prot [q)(xo't(t)7 h({xat(tfl)})) 7& h(xat(t))} <

where oy is the uniform random permutation on [t] and C € N, then
for all 6 > 0 and T > €°® we have

%, (7.3)

T

Z I{CI)(XUT(t)v h’({XUT(S)}5<t)) # h(XaT(t))}

t=1

Pr

oT

>4C'logT + log (;)} <.

Proof. For any t € [T], define the indicator variable
I = 1{@x"", h({x""D}) # h(xo)

where o is a uniform random permutation over [T']. For each ¢ € [T], we

define the reversed sequence of indicators as I] = Ip_¢1. We observe

that for any ¢t € [T, the indicator I; depends only on the realizations

of Xo(T)s Xo(T—1)s - - - » Xo(T—t+1), Since P is permutation-invariant over

Xg(1)s - - s Xo(T—t)- Lherefore,

E[L | L, ... Iiy] = E[I | Xo(zy- . -+ Xo(r_ssa)] < min {C, 1} ,
- T—-t+1

(T)

where the inequality follows from the fact that conditioning on XZ(T, 142)

the permutation o restricted on XT\{XU(T), o Xg(T—t42)) is also a
uniform random permutation, so that Eq. (7.3) applies.

'Note that [68, Proposition 10.2] also considers a similar martingale based
approach only for an almost sure rate.
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For any realization I1, ..., I;_y, define the centered random variables:
=L =R [ 1. D)
These variables form a martingale difference sequence, i.e., for all t €
[T), E[I; | If,...,I]'{] = 0. Applying the Bernstein inequality for
martingales (Lemma 2.10), we obtain:

T 2
k
2
Pr E I£'>kand2 <w gexp<—2(v+k/3)>,

t=1
where
T
22 =N B0, 0.
t=1
Note that, conditioned on I7, ..., I;_;, the indicator I] is a Bernoulli

random variable with parameter p; < min {T—Ltﬂ’ 1}. Therefore, if
I =1, then I} <1, and if I} = 0, then |I}| < p;. Using basic algebra,
we have, with probability 1

T
ZE 2\, I, gz +(1—p)p? < ClogT + 3C.

Substituting into the Bernstein inequality with
k=2(ClogT +3C) +1og(1/0) and v=ClogT + 3C,

we conclude that, with probability at least 1 — 4,
T T T T
t=1 t=1 t=1 t=1

T
C
< k—i—Zmin{,l} <3ClogT + 5C +log(1/6).
LM T

Here, we used the following elementary inequality:
(2a + b)?
2(a+ (2a+b)/3)

The lemma now follows from the fact that C'logT > 5C when T' > P
and C' > 1. L]

Va,b > 0, > b.
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Lemma 7.6 (From error bound to covering). Let H C {0,1}% be a binary
valued class and err € NT. For any Q C X7, suppose there exists a
prediction rule ® such that

T
Vh e H, VxT € Q, Z H{o(x!, h({x"71))) # h(x¢)} < err.
t=1

Then, there exists a covering set G C {0,1}*" such that for all x € Q
and h € H one can find g € G that satisfies g(x') = h(x;) for all ¢ € [T],
and

|g| < Z( ) < Terr—i—l‘

Proof. The proof essentially replicates that of Lemma 6.3. For any
I C [T] with |I| < err, we construct a function g; as follows. Let x* be
the inputs at time . We define

( t): 1—@(){ gI({Xlt 1)) iftel,
" d(xt, gr({x'} = 1)) otherwise.

where gr({x'}121) = {gr(x"), ..., g1(x*"1)}. We claim that the set G,
consisting of all such functions gy, is the desired covering set. To see
this, fix any h € H and any sequence x! € §. By assumption, we have

S 1@, A({x1) # hix)} < err.

Let I C [T be the set of positions i where ®(x?, h({x'~1})) # h(x;), so
that |I| < err. By construction, it is easy to verify that for all ¢ € [T,
we have g7(x!) = h(x;). The upper bound on |G| follows by counting
the number of possible subsets 1. ]

Proof of Theorem 7.4. Let ® be the 1-inclusion graph predictor. We
have that ® is permutation invariant, since the nodes in the 1-inclusion
graph are determined by subsets of X that do not depend on the order
of elements in the set. By symmetries of 7.i.d. distributions, for any
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T t.i.d

event A(x”) on xT "' vT | we have:
PriA(x")] = Eq[Pryr[A(Xo(1), -+ Xo(n))]]
=E Ele{A( (1) s Xe(T) )}
_ExTEffl{( ( Xo(1): X T)}
< sup Pry [A(Xy(1); " 5 Xo(T)))5

where the interchange of the expectations follows from Fubini’s theorem.
It is therefore sufficient to show that for any x € X7, wp. > 1—§
over a random permutation o on [T,

sup Z H{(x"W, h({x7 D)) # h(xy)} < 5VC(H) log T+log(1/9).
EH =1
To see this, we observe that by Sauer’s lemma (Lemma 2.1), there are
at most TVC(*) functions of H restricted on any given x”. Let now §
in Lemma 7.5 be TVC e and C = VC(H). When applying Theorem 7.3
together with a union bound, the error bound w.p. > 1 — § is of the
form 5VC(H)log T + log(1/0).

The upper bound for the size of the covering set G follows from
Lemma 7.6 by taking Q C X7 to be the set for which ® makes at most
5VC(H)log T + log(1/6) accumulated errors, where Pr[2] > 1 —4§. O

Theorem 7.4 and Theorem 7.1 immediately imply the following
regret bound.

Corollary 7.7. Let H C {0,1}* be a binary valued class with finite
VC-dimension, P be the class of all i.i.d. distributions over X7 and
T > ed. If 4(-,y) is convex, L-Lipschitz and bounded by 1 for all y € ),
then:

Fr(H,P) < \/3TVC(H) log? T + O(1).

This result recovers [69] but with a worse log T term. However, our
result establishes the (essentially) same result by using a completely
different technique. Moreover, our technique can be applied to more
general problems than the epoch-based approach of [69].

Indeed, for logarithmic loss, we have the following regret bound:
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Corollary 7.8. Let H be a F-composition class of Hy,--- ,Hq C {0,1}*
with © as in Example 7.3, P be the class of all i.i.d. distributions over
XT and T > €5 If £ is the logarithmic loss, then:

Fr(H,P) <O ((d + ijvcmg) log? T) .

=1

Proof. Taking o = %, we note that © can be a-covered by a set C of
size upper bounded by 7¢ under L; norm. Applying Proposition 7.2
and Theorem 7.4 and noticing that the composition function F' is 1-
Lipschitz, there exists a stochastic sequential covering set G of H w.r.t.
1.1.d. processes at scale o = % and confidence ¢ such that:

d
log |G| < dlogT + <5ZVC(”HZ~) log? T) + dlog T log(d/T) 4 dlogT.
i=1

The result follows by applying Theorem 7.2 and taking o = § = % O

For d = 2 and H being the class in Example 7.2, Corollary 7.8 im-
proves upon the O(v/T) regret bound established by [65]. Moreover, [60]

derive an O (%) risk bound under log-loss, which can be con-

verted into an O (VC(’H) log® T) regret bound using the epoch-based
approach of [69]. This bound is off by a factor of logT compared to
our regret bound in Corollary 7.8. In addition, our results apply to the
general (worse-case) regret 7p, rather than the average and well-specified
regret 77 considered in [60], [65].

7.3.2 Tight bounds for classes with finite star number

In the previous section, we demonstrated that the stochastic sequential
covering number of finite VC class is upper bounded w.h.p. by O log?T)
We now show that if we assume additional structure on the class, we
can improve the bound to ¢?(°8T) matching the naive fixed design
lower bound for many non-trivial classes. It can be showed that even
for 1-dimensional threshold functions the realizable cumulative error is
lower bounded by (log T), thus arguing that the error pattern counting

argument as in Lemma 7.6 cannot provide a bound better than eOlog® T)
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To resolve this issue, we introduce the notion of star number that
was used originally in [70] for analyzing the sample complexity of active
learning; however, we use it here in a completely different context. For
any binary valued class H and x? € X9, we say H Star-shatters x? if
there exist h, hy,--- ,hg € H such that for all 4, j € [d] with j # ¢ we
have:

h(x;) # hi(x;) but h(x;) = hi(x;),
i.e., a sequence x? is Star-shattered by # if there exists a function
h € H such that any labeling on x?, which differs by one position from
the realization of h, is also realizable by some function h; € H. Such a
sequence x¢ is called a star set of . The star number Star(#) of H is
defined to be the maximum number d such that there exists x? that is
Star-shattered by H. Clearly, we have Star(H) > VC(H) for all H.

We now introduce a new notion of certification, which is the key for
our following arguments. For any sequence x! and h € H, we say x'
certifies x; under A if:

VfeH, ifVielt—1], f(x;) = h(x;) then f(x¢) = h(xy).

We have the following property of finite star number classes w.r.t.
certification:

Lemma 7.9. If H has star number upper bounded by s, then for any
x! € X' and h € H we have:

. 5
Pr, [{xg(l), o, Xg—1)} certifies x5 under h}} >1- i
where o is the uniform random permutation over [t].

Proof. We only need to show that there are at most s points in x! that
can not be certified by the others under h. Suppose otherwise, that we
have s + 1 such points. Consider the realization of h on these points.

By definition of certification, we can find functions hi,--- ,hgy1 as in
the definition of Star-shattering. This contradicts the fact that the star
number is upper bounded by s. ]

We now prove a high probability bound on the number of non-
certified positions for a finite star number class, which is similar to
Lemma 7.5.
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Lemma 7.10. Let H C {0,1}% be a class with a finite star number and
T > €. Then, with probability > 1 — § over x (sampled from some
i.i.d. distribution over X7 for all h € H:

T
Z 1 {Xt_l does not certify x; under h} <
t=1

VC(H)logT + 4 Star(H) log T + log(1/6).

Proof. Note that the event {x!~! does not certify x; under h} can be
viewed as the event {® makes an error at step ¢} as in Lemma 7.5 (since
certification is permutation invariant). By Lemma 7.9 and Lemma 7.5
with C' = Star(H), we have, for all h € H and x* € X7 wp. >1-46
over uniform random permutation o on [77:

T
Z 1{x"®=1) does not certify X, () under h} < 4Star(H)log T+log(1/0).
=1

The result follows from a similar path as in the proof of Theorem 7.4 [

Lemma 7.10 allows us to construct the sequential covering set ex-
plicitly without relying on error pattern counting as shown next.

Theorem 7.11. Let H be a binary valued class with finite star number.
Then, there exists a stochastic sequential covering set G of H w.r.t. the
class of all i.i.d. distributions over X7 at scale v = 0 and confidence §
such that for 7' > e°:

log |G| < 5Star(H)log T + log(1/9).

Proof. We will construct a covering set G directly without relying on
the error pattern counting as in Lemma 7.6. This is the key to removing
the extra log T factor. We will introduce a set K to index the functions
in G, we assume that K is fixed and | K| = 2™ for some M to be chosen
later. For any k € K, we will construct a sequential function gj as
follows:

Let x” be a realization of the sample from an i.i.d. source. The
realization tree 7 of H on x' is a leveled binary tree of depth 7'+ 1,
with each node at level ¢ being labeled x; (where level 1 has only
the root v1), each left edge being labeled 0 and each right edge being
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labeled 1, such that any node v; € T at level ¢ has left (respectively
right) child if and only if there exist h € H such that h(x;) = 0
(respectively h(x;) = 1) and h(x;) = L(v; — vj41) for all ¢ < ¢ —1,
where v1 = v9 — -+ — v = v is the path from root v; to v and L is
the edge label function. Note that different realizations of x’ will result
in different realization trees.

We now assign values of the functions g; with k£ € K using the
following procedure. For any node v in the realization tree 7, we will
associate a set K(v) C K using the following rule (starting from root):

1. If v is the root, then K(v) = K;
2. If v has only one child u, then K(u) = K(v);

3. If v has two children uq, uo, we assign the sets to ui, us being an
arbitrary partition of K(v) of equal sizes, i.e., |[K(u1)| = [K(uz)],
K(ui) N K(ug) =0 and K(u1) UK (uz) = K(v).

Clearly, the value KC(v) for any node v at level ¢ can be determined
with only the realization of x! and the values of K of all nodes at level
t form a partition of K. The procedure K fails if there exists some
node v with two children such that |K(v)| < 2. Suppose the procedure
K does not fail. We have for any k& € K, there exists a unique path
v] = V9 — - -+ — vp41 with v; being the root, such that for all ¢ < T+1

we have k € K(v;). For any such k, we assign the value of g; on x! as:

gk(Xt) = L(vy = vi41),

where L is the edge label function as discussed above. If the procedure
K fails at some node v;, we assign the value of g;(x’) arbitrarily for
J =t

By definition of the realization tree, for any h € H there must
be a unique path v; — --- — wvpy1, with v; being root such that
h(x¢) = L(v¢ = vegq) for all ¢. Therefore, if the procedure IC does not
fail, then for k € K(vry1), we have h(x;) = gp(x') for all t < T by
definition of gx. We now show that by setting M = [5Star(H)+log(1/d)],
w.p. > 1 — 6 over x', the procedure K will not fail, thus proving that
the class G = {gx : k € K} is a stochastic sequential covering of H with
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confidence 0. To see this, we note that the procedure K fails at node vy
at level ¢ if and only if there are > M + 1 nodes with two children in
the (unique) path v; — --- — v, where vy is root, since only rule 3 will
reduce the size of value of K by 1/2. Assume now the procedure K fails
at node v;. Let h € H be a function such that h(x;) = L(v; — viy1) for
all 4 < t, which must exist by definition of realization tree. Since any
node v; in the path vy — -+ — v; with two children implies xI=1 does
not certify x; under h, we have that there are at least M + 1 positions j
(with j < t) such that x7~! does not certify x; under h. By Lemma 7.10
and selection of M, this happens with probability < §. This completes

the proof. ]
hi | ha | hs | ha | hs
X1 0 0 0 1 1
x| 0|0 ] 1|11
x3| 0|1 ]0|0 |1

{h1 ha} {ha hs5}
{91 92} {95-gs}
{h1} {h2} {hs} {ha} {hs}

{91} {92} {93 94} {95 g6} || {97 98}

Figure 7.1: Realization tree of H defined by the table above and partitioning of G.

Example 7.5. We illustrate the construction of the realization tree
in this example. We set H = {hi,---,hs}, as shown in the table of
Figure 7.1 with sample x1,x92,x3. The realization tree is shown in
Figure 7.1, where each function h € H is consistent with some path of
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the tree, and each path has some function h € H consistent with it. We
assign a subset of G for each node in the tree denoted as {-}. Observe
that if a node has only one child then the child has the same assigned
set as the parent, else we assign an arbitrary partition of the parent
set with equal sizes to its two children. The final partitions of the set
G ={g1, - ,gs} are in the leaf nodes of the tree. In the figure, binary
nodes (i.e., nodes with two children) are in gray color. The maximum
number of binary nodes in any path is 3, by selecting |G| > 23 = 8,
which guarantees that the assigning procedure does not fail until the leaf.
Each gy, is associated with a unique path from root to the leaf with (the
only) assigned sets on the nodes that contain gx. The values of g, are
defined to be the labels of out edges along the path in the obvious way.
One can verify that g; covers hi, g covers hao, g3, g4 covers hs, gs, ge
covers hy, and g7, gg covers hs. Generally, by Lemma 7.10 the number
of binary nodes in any path is of order O(logT') with high probability

= 20098T) engures the process success w.h.p.).

(i.e., setting |G|
Corollary 7.12. Let H C [0,1]* be the F-composition class as in
Example 7.2 with H; C {0,1}% being a class of finite star number, P
being the class of all i.i.d. distributions over X7 If ¢ is the Log-loss,
then:

Fr(H,P) < O(Star(H1) log T).

Proof. By Proposition 7.2 and Theorem 7.11, H admits a stochastic
sequential covering set G at scale a and confidence § such that log |G| <
2log(1/a) + 5Star(H1) log T +log(1/5). Taking v = § = 4 and applying
Theorem 7.2, the result follows. O

Note that a natural class that has finite star number is the threshold
functions H = {1{x > a} : z,a € [0,1]}, which has star number 2.
Corollary 7.12 implies the regret under Log-loss is upper bounded by
O(logT'). We refer to [70] for more non-trivial examples.

We note also that the O(logT) regret bound is not likely to be
established by the epoch based approach (which [60], [65], [69] have
used to establish their regret bounds), since the epochs will inevitably
introduce an additional logT" factor.
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However, having a finite star number is not a necessary condition

O(logT)  To see this, consider

for achieving a covering number of size e
the hypothesis class that labels exactly one input as 1 and assigns label
0 to all others. This class admits a worst-case sequential cover of size

T +1 = eOUeT) (cf. Chapter 6.1.2), yet its star number is infinite.

7.3.3 Tight bounds with finite Star-Littlestone dimension

In this section, we introduce a new complexity measure that we call
Star-Littlestone dimension. The main purpose of this measure is to
incorporate the star number and Littlestone dimension that goes beyond
simple finite star number, and allows us to expand the class of H with

eOWogT) cover.

Definition 7.2 (Star-Littlestone dimension). Let [J%,{0,1}’ denote the
set, of all binary sequences of length at most d. For any integers d and
s, we say that a binary tree 7 : UL ({0,1}" — X is Star-Littlestone
shattered by H at star scale s if for every path ¢ € {0,1}%, the star
number Star(H.a) > s, where

He = {heH Ve ld, h(r(d™h) =e}.

In words, Star-Littlestone shattering means that for every path
in the tree, the class of hypotheses consistent with the path has star
number greater than s. The Star-Littlestone dimension SL(s) of H at
star scale s is defined as the largest d such that there exists a depth-d
tree 7 that is Star-Littlestone shattered at scale s by H.

Applying Theorem 7.11 and the SOA argument as in [35], we estab-
lish our next main theorem.

Theorem 7.13. Let H be a binary valued class with Star-Littlestone
dimension SL(s) at star scale s. Then, there exists a stochastic sequential
covering set G of H w.r.t. the class of all i.i.d. distributions over X7 at
scale a = 0 and confidence § such that:

log |G| < O(max{SL(s) + 1,s}logT + log(1/9)).

Proof. The proof will incorporate the SOA argument as in [35] and
the result from Theorem 7.11. For notational convenience, we denote
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d = SL(s) + 1. For any I C [T] with |I| < d, we will construct a
set Gr. Let ® be the SOA predictor (cf. Algorithm 6.1) that predicts
the label for which the remaining consistent subclass has maximum
Star-Littlestone dimension at star scale s, if both subclasses have SL
dimension 0 we predict the label for which the remaining consistent
subclass has maximum star number (and break ties arbitrarily). We
now construct functions in Gy as follows. The predictions of functions in
G are partitioned into 2 phases (start with phase 1). At phase 1, all the
functions in Gy use the same prediction rule as in Lemma 7.6, that is, if
we are at time step t € I, we predict using 1 —®, else we use ¢ to predict,
where ® is the SOA prediction rule described above. We enter phase
2 if the remaining consistent class has star number upper bounded by
s; we then construct the prediction functions in G; as in Theorem 7.11
with Star(H) = s, confidence § /T and |G;| < e3slos T+los(T*1/3) T
covering class G is defined to be:

6= U a

[y, |11<d

By Theorem 7.11 with Star(#) = s and § = /7! and computing the
number of s, we have

|g‘ < Td+1€5slogT+10g(Td+1/6) < 6O(max{d,s}10gT+log(1/6))

We now show that G is indeed a stochastic sequential covering of H
with confidence §. Let H; be the (random) subclass of functions in H
that are consistent with ® with error pattern I before entering phase
2 2 (it is possible that h remains on phase 1 until time 7). Note that
all functions in Hj agree on samples at phase 1. Note also that, with
probability 1 we have H = U;c[r),11<q H1- To see this, we note that if
h disagreed with the SOA then the remaining consistent class has SL(s)
decreased by at least 1 (similar to Lemma 6.2) or has star number < s if
the current consistent class has SL(s) = 0. This implies that any h € H
can be disagreed with SOA at most d times before entering phase 2,
which must be in some H; with |I| < d. Now, for any I with |I| < d we

2Here, phase 1 and 2 corresponds to that the functions in H consistent with h
on current sample has star number > s and < s, respectively.
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need to show that:

Pr[Gr covers Hy| > 1 — Ta

Note that the main difficulty here is that Hy is a random subset. We
show that conditioning on any realization of Hj, the above inequality
holds (the inequality will then hold by law of total probability). This
follows from Theorem 7.11 by noticing that the samples in phase 2 are
still 4.7.d. and independent of samples in phase 1, and Gy trivially covers
Hy in phase 1 by definition of Gy and Hj;. The theorem will now follow
by a union bound on all the Is. O

Example 7.6. In this example, we show a class H that has both infi-
nite star number and Littlestone dimension but finite Star-Littlestone
dimension. Let H = {hjqy(7) = 1{z € [a,b]} : [a,b] C [0,1]} be the
indicators of intervals. It is easy to see that H has both infinite star
number and Littlestone dimension. However we can show that it has
Star-Littlestone dimension 0 at star scale 4. To see this, consider any
point x € [0, 1] and the hypothesis class H1 = {h € H : h(z) = 1}. We
show that the star number of H; is < 4. For any 5 points in [0, 1], there
must be at least 3 points on the same side relative to x, the restriction
of H; on such points is equivalent to threshold functions (either of form
1{z > a} or 1{x < b}), thus it cannot Star-shatter these 3 points. This
implies that the global sequential covering size of H is upper bounded
by e?U°eT) a5 in Theorem 7.13.

Example 7.7. Let
d
H = {hB(X) =1{xeB}:B= H[ai,bi] C Rd}
i=1

be the class of indicators of rectangular cuboids in R?. Note that H
has infinite Star-Littlestone dimension for any finite star scale when
d > 2 and the VC-dimension of H is upper bounded by O(d). By
Example 7.4, we have H can be expressed as a function in terms of
indicators of intervals. Applying Proposition 7.2 and Example 7.6 we
obtain a covering set G of H with log |G| < O(dlogT + dlog(d/d)). This
implies a regret bound of mixable losses (including logarithmic loss) of

order O(dlogT + dlogd).
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Remark 7.1. We leave it as an open problem to determine if the
upper bound e@osT)
class. Establishing such a result even for the threshold functions H =
{hw(x) = 1{{w,x) > a} : w,x € R, a € R} with d > 2 seems to be a
hard task.

can be achieved for any finite VC-dimensional

7.4 Real Valued Class with Finite Fat-shattering

We have established tight stochastic sequential covering bounds for
finite VC classes in the previous section. We now consider the more
general setting where H C [0,1]% is a class of real-valued functions
taking values in [0, 1], and assume that H has a bounded fat-shattering
dimension.

We first recall the notion of fat-shattering number, already discussed
in Chapter 2.2. For any class H C [0,1]", we say H a-fat shatters
x? € X% if there exists s? € [0, 1]¢ such that for all I C [d] there exists
h € H such that for all ¢ € [d]: (i) If ¢t € I, then h(x:) > s; + a; and
(ii) If t € I, then h(x;) < s; — a. Then, the fat shattering number of H
at scale a is defined to be the maximum number d := d(«) such that
there exists x? € X% with H a-fat shatters x¢.

We now state our main result for this section.

Theorem 7.14. Let H be a class of functions X — [0, 1] with the a-fat
shattering number d(«). Then there exists a stochastic global sequential
covering set G of H w.r.t. the class of all i.i.d. distributions over X7 at
scale o and confidence ¢ such that:

log |G| < O(d(a/32)(log T log(4/a))*
+ (log? T + log T'log(4/c)) log(log T'/6)),

where O hides absolute constant which is independent of «, T, and 4.

We first introduce the notion of local a-covering. We say that a class
F locally a-covers H at xI' € XT if for all h € H there exists f € F
such that:
vt € [T], |h(x) — f(x)] < .
Here, we also assume that F C H (we can always convert a-covering
set F of H to a 2a-covering set F C H such that |F| < |F]).
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The following lemma upper bounds the local a-covering size w.r.t.
the a-fat shattering number of #H, which is due to [71].

Lemma 7.15. Suppose the « fat-shattering number of H is d(«). Then
for all xI' € X1 there exists F (which depends on x') that locally
a-covers H at x! such that:

2\ [d(a/4) 10g(%)1
|F| <2 (T (2 i 1) > e < 2d(oz/4)(log2 T+2log2(1/a)+0(1))_
[0

Our proof of Theorem 7.14 is based on the following key lemma,
which is an application of the classical symmetrization argument and
an epoch approach similar to [69].

Lemma 7.16. Let H C [0,1]* be a class with a-fat shattering number
d(a). Let S1,S2 be two i.i.d. samples from the same distribution over
X, both of size k. For any S; with i € {1,2}, we define a distance for
all hi,ho € H as:

hl,hg Z 1{’h1 2(8)‘ Z a}.

SES;
Then

Prs, s, |3h1, ha € H s.t. dg, (b1, ha) = 0 and dig(ha, ho) > 7]

< 2O(d(a/8))—r

where O(d(a/8)) = 2d(a/8)(log? k + 2log?(1/a) + O(1)).

Proof. We use a symmetrization argument. We denote by A the event
that 3hq, he € H such that dgil(hl,hg) =0 but d‘é‘;(hl, he) > r. Let o
be a random permutation that switches the ith positions of S, 52 w.p.
% and independently for different i € [k]. By symmetries, it is sufficient
to fix S1,.S2 and upper bound Pr,[A[c(S1, S2)]]. By Lemma 7.15, we
know that there exists a set F that «/2-covers H on S; U Sy with:

|JT_‘| < 26[(0{/8)(10g2 k+210g2(1/a)+0(1))'

If the event A happens, then there exist fi, fo € F such that (using
property of covering):

& (f1, f2) = 0 but d&(f1, f2) >
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Clearly, in order for A to happen, any position s € Ss such that
| f1(s) — fa(s)| > 3a must not be switched to S} under o, which happens
with probability upper bounded by 27". Applying union bound over all
pairs of F, we have

PI‘SI S [A] < 22d(a/8)(log2 k+21og2(1/a)+0(1))—r

which completes the proof. O

Proof of Theorem 7.14. We partition the time horizon into epochs,
where each epoch s ranges from time step 271, ... 2% — 1. For each
epoch s, we will construct a covering set Gs. The global covering set G
will be constructed by considering all the combinations of functions in
Gs with s € {1,--- , [logT"}.

For any epoch s, we construct G, as follows. Let F C H be the local
a-covering set on the samples x1, -+ ,X9s—1_7. By Lemma 7.15, we have

‘J,—_-‘ < 2d(a/4)(82+2logz(l/a)-&-O(l)).

Let
rs = 2d(a/8)(s% 4+ 21og?(1/a) + O(1)) + log(log T/5).

By Lemma 7.16 w.p. > 1 — % for any h € H there exists f € F
such that f 4a-covers h on samples Xgs-1, -+ ,X2s_1 €xcept rg positions
(the f € F that a-covers h on x2"' 1 is the desired function since F
is a local a-covering). Let J be a discretization of interval [0, 1] such
that for any a € [0,1], there exists b € J so that |a — b| < 4a. We
have |J| < [&£]. Now, for any I C {2571,... 2% — 1} with |I| < rg,
{ki}ier € Jand f € F, we construct a function f1 i1 as follows:

L Ift €I, weset frpn(xe) = ki;
2. Ift g 1, weset frpn(xe) = f(xt).

The class s is defined as the class of all such f; ;1. By definition of
rs and by Lemma 7.16, we have w.p. > 1 — &, for all h € H there
exists g € G, such that for all t € {2571, ... 25 — 1} we have:

lg(x¢) — h(xy)] < 4da.
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We observe that:

|gs| < |}—‘ . (25|K|)r5+1 < 2O(d(a/8)((s10g(1/a))3)+(s+log(1/a))log(logT/é)).

We now construct the global covering set G as follows. For any index
(J1,+ s dnegm)) With js € [|Gs]], we define a function g such that it
uses the j, function in G5 to make prediction during epoch s. By union
bound on the epochs, we have w.p. > 1 — § for any h € H, there exists
g such that:

vt € [T], |h(x;) — g(x")| < 4a.
This implies that G is a 4« global sequential covering set of H. Thus
[log T']
|g| _ H |gs| < 20(d(o¢/8)(logTlog(l/cv))Al—i-(log2 T+log T log(1/)) log(logT/cg)).

s=1

The result follows by taking « in the above expression to be a/4. [

We complete this section with two results regarding the expected
worst case minimax regret.

Corollary 7.17. Let H be a [0,1]-valued class with a-fat shattering
number of order a~! for some I > 0, and P be a class of all i.i.d.
distributions over X7 If £(-,y) is convex, L-Lipschitz and bounded by
1 for all y € ), then:

Pr(H,P) < O((LT)HD/0+2)
where O hides a poly-log factor.
Proof. Apply Theorem 7.14 to Theorem 7.1 to find

Pr(M,P) < inf {aLT +0 (VTa)}

and taking o = (LT)~'/(*2) finishes the proof. O

Note that [28, Theorem 3] demonstrated that for known i.i.d. pro-
cesses one can achieve an O(T(=1D/!) regret bound (in fact they estab-
lish the result for the smooth adversary processes). However, extending
such an chaining based argument to our unknown i.i.d. processes as
in Corollary 7.17 seems to be an non-trivial task, since for unknown
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1.1.d. processes one cannot express the expected worst case regret in
the iterated minimax formulation as in [25]. We leave it as an open
problem to determine if the bound in Corollary 7.17 is tight or not for
the unknown i.7.d. processes.

Corollary 7.18. Let H be a [0,1]-valued class with a-fat shattering num-
ber of order a~* with [ > 0, and P be the class of all i.i.d. distributions
over X7, If £ is Log-loss, then 7p(#,P) < O(TV/1).

Proof. Applying Theorem 7.14 to Theorem 7.2, we have 7p(H,P) <
info<a<i {2aT+ O(a‘l)}, and taking o = T+ completes the
proof. O

We can show that the regret bound in Corollary 7.18 is actually
tight upto poly-logarithmic factors for general classes of a-fat shattering
number of order a~! (with [ > 1), see Proposition 7.3 in Section 7.5.
However, it is known by [46], [61] that this bound is not tight for all
classes even for the adversary case.

7.5 Lower Bounds For Regret

We now provide a general approach for lower bounding the regret 7(#, P)
using the fixed design regret defined in (4.5) and analyzed in Chapters 5
and 6. We will assume throughout this section that # C [0,1]% is a
general real valued function class and P is the class of all i.7.d. processes
over XT'. We first introduce the following well known tail bound for the
coupon collector problem, see e.g. [72, Theorem 1.9.2].

Lemma 7.19. Let X1, X5, - be i.i.d. samples from the uniform distri-
bution over [T], and p be the first time such that [T] C X¥. Then for
any ¢ > 0 we have Pr[p > T'logT + ¢T| < e .

For any function ® that maps sequences from X* to R, we say ® is
monotone if for any x7 C z’* we have ®(xT) < ®(z'1), where xI' C 27!
means that for any s € X, the number of s appearances in x” is no more
than the number of appearances of s in z”!. We also assume a regularity
condition for the loss ¢ such that for all 1,92 € )V there exists y € Y
with £(g1,y) > £(2,y). We also recall that ri(H) = supyr r*(H|xT).
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Theorem 7.20. Let H be any [0, 1]-valued class. If the fixed design
regret 7 (H) = max,r v (H|xT), where r%(H | xT) defined in (4.5), is
monotone over x! and ¢ satisfies the above regularity condition, then:

rr(H,P) > (1=0(1/1og T))ri -1 () (H) = (1=0(1/1og T))r(7/10g7) (1),

where P is the class of all i.i.d. distributions over X7 and k(T) =
TlogT + T'loglogT.

Proof. Let %I be the feature that achieves the maximum of r%(H | X7)
(i.e., r7(H)). We define the distribution v to be the uniform distribution
over {X1, -, Xy} (with possibly repeated elements). Let T3 = T'log T +
T'loglogT. We have

T
r,(H,P) = inf sup Eyr ,r [Sup (ZE Gt yt) — hig?fizf(h(xt),yt)ﬂ
t=1

¢T1 yTcp £

T
> (1bnf Eyxrioym [Sup (ZZ JesYt) — hirgqu{Zﬂ(h(xQ,yQ)]

vy \i=1

sup (Zﬁ Ot Yt) — mf Zf (xt) yt> | %7 CXT]
T
mfsup (ZE e, yt) — 1nf Z€ (xt), Yt > | zT ¢ XTI]

!
T yT1 =1

=Prx" cx"]-E[rf, (H | x™) | %" c x™]

(@)
> inf Pr[x cxh
o7

®
> Prix” cx']-E

Q PrixT € xT (| KT) S <1 ! )r*(’H)

- logT ) T°7
where (a) follows by conditioning on the event {%” C x”1} and observing
that the regret is positive for all x’*; (b) follows by inf E > Einf; (c)
follows from the fact that rf, (% | x™) > r4(H | %*) which further
follows from the monotonicity of r4(H | xT); (d) follows by Lemma 7.19.
To complete, we notice that T = x~1(T}) and k= (11) > O

10gT1
The following lemma shows the monotonicity for Log-loss:

Lemma 7.21. For Log-loss, we have 7, (% | x™) > r5.(# | XT), so long
as T c x™
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Proof. Note that for any x”, we have by Theorem 4.3 that:

T
ro(H | XT) = logz sup H h(x)Y (1 — h(x)) 4.

7 heM i
Therefore, any permutation over x’ does not change the value r7. Now,
suppose X! C x™'; we can permute x’' so that the first 7' samples
match with %7 The result follows from the fact that playing more
rounds does not decrease the regret. To see this, we let h € H to be
the hypothesis that achieves minimal accumulated loss in the first T'
rounds, we then select the label y; for which (9, y¢) > ¢(h(xy),y:) for
the following steps ¢ > T, which ensures non-decreasing regret. O

Finally, we apply the above general lower bound to the expected
worst case minimax regret.

Corollary 7.22. Assume ¢ is the Log-loss. If r}.(H) > Clog™® T then
7r(H,P) > Clog*T — o(log™ T,

where P is the class of i.i.d. distributions. If 7% (H) > CT*, then

cT*
g P) >

rr(H,P) log® T
Remark 7.2. A question arises whether the log T" factor in Corollary 7.22
can be eliminated. We do not have a complete answer for this question
at this point; however, it is easy to show that there exists a class

H such that #7r(H,P) < (1 — e 1)r4(H), where P is the class of all
i.1.d. processes. Meaning that the reduction as in Corollary 7.22 will

—o(T%/1log™T).

necessarily introduce a factor < 1 for polynomial regrets r7.(H).

We refer to Chapter 5 for the lower bounds on 77(H) of various
classes H under Log-loss. In particular, the following lower bound is a
complement to Corollary 7.18.

Proposition 7.3. For any [ > 1, there exists a [0, 1]-valued class H with
a-fat-shattering number of order O(a™") and P is the class of all i.i.d.
distributions over X7, such that

Pr(H,P) = Q(T/H),

under logarithmic loss.
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Proof. Let X = [T]; we define H = {h € [0,1]% : >, h(t)! < 1}. We
claim that the a-fat shattering number of H is upper bounded by a~*. To
see this, we assume there exist d points x% € [T such that d > a~! and
x% is a-fat shattered by H. By definition of a-fat shattering, there exist
two functions hq, he € H such that Vi € [d], |h1(x;) —ha(x;)| > 2. This
implies that S°2; |h1(t) — ha(t)|' > d - (2a)t > 24 ie., [|h1 — ha||; > 2.
However, this contradicts the fact that ||h1 — ho||; < ||h1]]i + [|hel] < 2
by the triangle inequality of L; norm. By Theorem 5.16, we have
(M) > Q(TYD). Tnvoking Corollary 7.22, the result follows. [

Note that Proposition 7.3 only shows that the lower bound Q(7%/(+1)
holds for certain hard classes. We prove in the following proposition a
lower bound that holds for all classes.

Proposition 7.4. Let [ > 1, H be any [0, 1]-valued class with a-fat-
shattering number of order (o) and P is the class of all i.i.d. distri-
butions over X7, Then

fT(Hv P) > Q(T(lil)/l%
under logarithmic loss.

Proof. Let xT be samples that are a-fat-shattered by H and witnessed
by s, where o > Q(T‘l/ ). We now describe an adversary strategy
that achieves the Q(TU=D/1) lower bound for the fixed design regret
ri(H | xT). To see this, for any t € [T, if the predictor predicts
gt > St, we set y = 0, else, we set y; = 1. By definition of a-fat
shattering, there exists h € H such that V¢ € [T], |h(x:) — 9| > o and
UGt, yr) > L(h(x¢), yt). We assume without loss of generality, y; = 1. By
definition of Log-loss, we have:

(@t ye) — €(h(xt), ye) = log(h(x4)/9¢) = log (G + @) /1) = /2,

The last inequality follows by log(1 + z) > x/(z + 1). Therefore, we
have r4(H | xT) > Ta/2 > Q(TE1/!). The proposition now follows by
Corollary 7.22. O

Note that when [ > 2 the lower bound in Proposition 7.4 is achieved
by Logistic regression [73, Example 2]. Therefore, the lower bound is
not universally improvable (this is similar to Corollary 7.18).
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Example 7.8 (Well-specified v.s. worst case y’). In this example we
demonstrate that the expected worst case regret #7 can be substantially
different than the well-specified average case regret 7r as in [60]. This will
explain why our Theorem 7.20 is a necessary technique for establishing
lower bonds for 77. To see this, for any X with |X| > T we define:

H= {hb(x) :;er(\;%):be [—1,1]"}.
This class admits an O(1) uniform KL-cover at scale O(1/T), and
therefore by [60], the well-specified regret is of order O(1). However,
by [61, Page 6], the fixed design regret r(H) > 2(1/vVT)T > Q(VT).
Invoking Corollary 7.22, this implies an Q(ﬁ ) lower bound for 7p.
This also demonstrates that the KL-cover (or equivalently the Hellinger
cover) as in [60] cannot capture the behaviour of 77 under Log-loss even

with values bounded away from 0.

7.6 Bibliographical Notes

The hybrid learning scenario considered in this chapter was introduced
in [69]. For finite VC-dimensional hypothesis classes under absolute loss,
it was shown that the regret grows as O(,/VC(#H)T log T'). The analysis
employs an epoch-based method that reduces the infinite hypothesis
class to a sequence of finite coverings (in contrast to the single global
covering used in this chapter), with the regret bound influenced by a
VT term arising from the covering approximation. The same approach
was applied in [65] to the logarithmic loss, yielding an O(v/T) regret
bound. In [60], for logarithmic loss and finite VC-dimensional hypothesis
classes, the risk was shown to grow as O((VC(H)log? T)/T); this result
applies to the average-case minimax regret and under realizability.
A more general framework was studied in [25], where at each time
step Nature adversarially selects a distribution from a restricted set
determined by previously observed samples. This gives rise to the
concept of distribution-dependent Rademacher complexity within a
minimax formulation. The results therein apply to the distribution
non-blind setting, where the distribution is known in advance.

The material presented in this chapter follows the framework devel-
oped in [74].
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Online Leaning under General Unknown
Processes

We studied in Chapter 7 the online learning setting where features
are generated by an unknown i.i.d. process, and we characterized tight
performance guarantees using the notion of expected worst-case regret.
In this chapter, we turn to the stochastic setting under more general
feature generation processes, which may be highly flexible and, in par-
ticular, non-stationary. In particular, we focus on a smooth adversarial
setting for known and unknown (universal) distributions. Furthermore,
in this chapter we study here how the structure of the random process
class impacts expected worst case regret. This is unlike most of the
results in our prior chapters that focus on the impact of the structure
of H on regret

8.1 Stochastic Modeling of Data Processes

Let X be a feature (instance) space, Y = [0,1] be the prediction
space, and ) = {0,1} be the true label space. As always, we write
H C )7X for a class of functions X — 37 For any time horizon T', we
consider a class P of random processes over X7. We are interested in the
expected worst case minimax regret 77 (7, P) as defined in (7.1) under
a general convex loss /. This includes, for instance, the absolute loss

115
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2(4,y) = |9 — y| (which can be interpreted as IEBNBemouHi@)[l{l; #y}])
and the logarithmic loss £(§,y) = —ylog§ — (1 — y)log(1 — 3). Using
the minimax inequality (cf. Section 2.3), it is easy to observe that

T T
7:T(/}-{a P) > S;zlql? icﬁnIfE(xT,yT)NEQT ;E((bt(xtayt_l)vyt) - hlg?f-tgg(h(x”’ yt) )

where €27 is a joint distribution over X7 x Y7 such that the marginal
distribution of €27 restricted on X7 is in P. We will use such a relation
to derive lower bounds for 7.

In this chapter, we assume that H C {0,1}* is binary valued!' and
have finite VC-dimension. We specifically study here how the structure
of the random process class P impacts expected worst case regret. This
is unlike most of the results in our prior chapters that focus on the
impact of the structure of H on regret. We now provide several examples
of P that demonstrate how previously considered setups in the literature
fit into our framework.

Example 8.1. If P is the class of all singleton distributions over X7,
our setup recovers the adversary setting, as discussed in Chapters 5 and
6, as well as in [24]. If P is the class of all 4.i.d. processes over X1, our
setup recovers those of [69] discussed in Chapter 7.

Example 8.2 (The smooth adversary setting). The smooth adversary
setting is an intermediate setting between the full adversary and the
i.i.d. case. In this setting, one assumes that there is some (known)
underlying reference measure p over X, such that at each time step ¢ an
adversary selects some o-smooth distribution v; w.r.t. u that generates
sample x;. Formally, we say a distribution v is o-smooth (with o < 1)
w.r.t. p if v is absolutely continuous w.r.t. p and has density v(x) = g—;
such that p ({x:v(x) <1/c}) = 1. We denote by S?(u) the class of
all o-smooth distributions w.r.t. u. We say a process v* over X7 is o-
smooth w.r.t. p if for all + < T the conditional distribution v;(X; | X*~1)

of X; conditioning on X*~! is in S(u1) almost surely. Using a standard

We also assume H to be binary valued for the clarity of presentation. However,
our results can be extended to real valued functions as well.
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skolemization argument as discussed in Lemma 2.2, the minimax regret
for any class 1 w.r.t. smooth adversaries, as in [27], [28], [75], is simply

rr(H,S7(w)-

Note that the smooth adversary setting in Example 8.2 requires the
reference distribution u to be known and fixed in advance. However,
in many practical scenarios, one may have no prior knowledge of the
underlying reference measures. To address this limitation, we introduce
the following general concepts.

Let p1,...,ux be probability measures over X, and let S7(uy)
denote the set of all o-smooth distributions over X with respect to refer-
ence measure fi. Let v4(X; | X*~1) denote the conditional distribution
of X; given the past X*~!. Then a random process X’ over X1, with

T

joint distribution v, is said to be a (K, 0)-smooth process if

Pr [3p1,. .., px such that Vt € [T], v (X, | X1 U S%(uk)| =1.

(8.1)

We denote by U% the class of all (K, o)-smooth processes.
Furthermore, we denote by S(u1, ..., px) the class of all o-smooth
stochastic processes with (known) reference measures pu1, ..., pg; that

is, for any v? € S%(u1,. .., pux), we have for all ¢ € [T,
v (X, | Xt U S7(ux) almost surely.
kE[K]

Note that the processes in Example 8.2 correspond to the special case
S?(u), for a single known reference measure f.
This leads to our next definition:

0?{ = U Sa(ﬂla'-'nuK)v
M1y K
where the union is taken over all K-tuples of distributions over X. It is

straightforward to show (see Propositions 8.1 and 8.2 below) that:

e cU® 0% cUY", s, uk) € U% C U%,

=

where the last two inclusions are strict.
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Proposition 8.1. Let u1,--- , ux be K arbitrary distributions over the
same domain X. Then for all k € [K] the measure py, is 1/K-smooth

w.r.t. ji, where g = % Eszl -

Proof. Note that j is interpreted as follows: for any measurable event
A C X, we have ji(A) = & K uk(A). Tt is easy to verify that i is
a probability measure over X'. We now show that, for all k € [K], ug
is 1/K-smooth w.r.t. i. To see this, we observe that puy is absolutely
continuous w.r.t. . By Radon—-Nikodym theorem, there is a density
ug(x) = dd% of up wr.t. . Let & = {x : up(x) > K}. We have
pi(Ex)/ K > (&) provided i(Ex) > 0. However, by definition of ji, we
also have py (&) /K < i(&). This implies that u(&;) = 0. O

Proposition 8.2. Let uj, 2, u3 be distributions over & such that py
is o1-smooth w.r.t. uo and uo is oo-smooth w.r.t. pus. Then pg is o109-
smooth w.r.t. us.

We emphasize that the class U is a very broad family of processes,
encompassing many interesting and natural settings. A full characteri-
zation of this class is left for future work. Instead, we concentrate on
the subclasses UL and 0‘1’, which are rich enough to convey our core
insights. Intuitively, one can view U} as the collection of all dynamically
changing processes with cost K: that is, along any sample path, the
number of distinct conditional distributions of the process is bounded
above by K.

Notations. Throughout this chapter, we use lower case Greek letters
i,V to denote a probability measure over X. For any two measures
11, ha, We use i - uo to denote the product distribution of 1, uo and
u®T to denote the i.i.d. measure of 1 over X7. We use boldface Greek
letters v to denote general distributions over X7. We use Math Sans
Serif font P to denote classes of distributions over X7, For any random
process X T over X7t < [T] and x'~!, we use 14(X; | x'~!) to denote
the conditional distribution of X; conditioning on x!~!. We also use
v" to denote the joint distribution of X7 over X7. Sometimes, we
write v; = v(X¢ | x'71) to simplify the notation when the conditioning
context x'~! is clear. We should emphasize that all parameters appearing
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in our bounds are non-asymptotic, meaning that one should not view
them as constants. We will often provide ranges of the parameters for
our bounds to hold.

8.2 Known Distribution

We start by examining the simpler case where the reference measures
are known, i.e., the class S?(u1, ..., ux). By Propositions 8.1 and 8.2,
the analysis of the smooth adversary setting with multiple (known)
reference measures can be reduced to the case with a single reference
measure. It is therefore sufficient to consider the setup from Example 8.2,
where a single reference distribution pu is given.

The following proposition, due to Haghtalab et al. [27] and substan-
tially simplified in Block et al. [28], plays a key role in our analysis.

Proposition 8.3. For any o-smooth random process X7 with refer-
ence measure y, there exists a (coupled) random processes VT with
i.i.d. distribution p®™" such that w.p. > 1 — Te™°™ (over the joint
distribution of X*, V™) we have

Vt € [T]7 Xt € {Vm(t—l)—Ha e )th}'

Proof. We first sample V™7 according to the i.i.d. distribution p®™7.

We then construct X; recursively in the following manner. After generat-
ing X1,---,X;_1, the conditional distribution of v(X; | X*~1) is deter-
mined. Let Sy be a random set such that each Z; € {V,,¢1—1)41,* » Vint }
is included into S; independently w.p. ovi(Z;) (i-e., w.p. 1 — ovi(Z;) we
do not include it), where v; is the density of v(X; | X*™1) w.r.t. p (see
Example 8.2). We then generate X; by sampling uniformly from S; if
St is non-empty and sampling independently from v if S} is empty. It
is easy to verify that X7 is distributed exactly according to v, and
w.p. > 1—(1—-0)", we have Xy € {Vp,4—1)41, ", Ve }. The result
then follows by union bound on [T]. O

A set A C X is monotone if for any xI C z!", we have xI e
A= zT" € A, where xT C 27" means xT
x! € A means any infinite sequence with prefiz x* is in A. We have

. !/
is a sub-sequence of zI and

the following lemma.
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Lemma 8.1. Let X7 and V™ be the coupling as in Proposition 8.3
and A C X*° be an arbitrary monotone set, then

Pr[XT € Al < Te ™ + Pr[V™T € A].

Proof. By Proposition 8.3, we have w.p. > 1 —Te ™ that X7 c V™71,
Denote B to be such an event. Since A is monotone, we have

E[1{{XT ¢ A}AB} —1{{Vv™T € A} AB}] <0
This implies
Pr[{XT € A} A B] < Pr[{V™ ¢ A} A B] < Pr[V™T € A].
Our result follows by observing that:

Pr[XT € Al = Pr[{XT € A} A B] + Pr[{XT € A} A B]
< Pr[{XT € A} A B| 4+ Pr[B] < Pr[{XT € A} AB] +Te ™

which completes the proof. O

Note that unions and intersections of any collection of monotone
sets are monotone. For any two functions hy, hy : X — {0,1}, the set
Ay ={x>® € X : 32, 1{h1(x¢) # ha(x¢)} > N} is monotone for all
N eN.

We now present one of our key technical lemmas, which establishes
a high-probability covering property for finite VC classes.

Lemma 8.2. Let # C {0,1}* be any class with finite VC-dimension
and p be an arbitrary probability measure over X. If F, is an e-cover
of H w.r.t. u, i.e.,

sup inf Pry.,lh(x) # f(x)] <e, (8.2)
heH FEFe

with € = then for all n € N and M > 2 we have:

M2’

Prym eom 21612 flélfe; Hh(xs) # f(x¢)} > 3VC(H) +n| < e
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Proof. For any h € H, we denote by f), = arg min e 7, Pryu[h(x) #
f(x)]. Let S° and S! be i.i.d. samples of p with size M and M?,
respectively. For any N < M, we define two events:

AN = {3h eH st. Y L{h(s) # fu(s)} = N},

s€S0

and

Agz{aheﬂs.t.Zuh( # fu(s)} =N and Y 1{h(s) # fu(s)} = }
s€80 seSt
We now claim that Pr[A) | AY] > 1. To see this, conditioning on A,

there exists some h for AY to happen. For such function h, we can
select € = 1/(2M?) in (8.2) such that (since |S!| = M?):

E |3 1{n(s) # ful >}] >
sest

By the First Moment method we know that 1—Pr[X = 0] = Pr[X > 1] <
E[X] < 1/2 for any random variable X supported on N with E[X] < 1/2.
Thus Pr[A} | A}] > 1. This implies that Pr[A)] < 2Pr[A} n AY] <
2Pr[AY].

We now upper bound Pr[A%]. By symmetries of i.i.d. distribution, we
have Pr[AY (S°USY)] = E,Pr[AY (7(S°USh))] < supgo g1 Pro[AY (7(SOU
S1))], where 7 is uniform random permutation over SYU S!. We now fix
any S° U S! and perform a uniform random permutation 7. Let h € H
be any function such that there exist at least N elements in S° U S for
which f,(s) # h(s) (otherwise Pr,[AY] = 0). Note that, in order for AY
to happen under 7, none of the elements s € S9 for which fj,(s) # h(s)
should be permuted to S'. Denote such an event to be B. We have

(W) 1
() S A

Pr[B] =

where we have used the fact that % > ‘;T_Z for all b > a > 7 > 0. Since
there are at most (M? + M)V functions restricted on S° U S*, we
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have by union bound that

(M2 + M)VC('H) B
where we used the fact that M > 2. The result follows by taking
N := 3VC(H) + n in the above expression and noting that Pr[A}] <
2Pr[AY]. O

Lemma 8.2 implies the following important approximating bound
for o-smooth processes.

Proposition 8.4. Let 7 C {0,1}* be a class with finite VC-dimension,
1 be an arbitrary distribution over X and X7 be any o-smooth random
process w.r.t. u. If we take € = Wz(ﬂﬁ) for some § > 0 and F¢ to
be the e-covering set of H w.r.t. i as in Lemma 8.2, then

T
2
i > < —.
Pr 216171_)[ flél]f__e tE:1 Hh(Xy) # f(Xy)} >3VC(H)+n| < B+ T

Proof. Taking m = w as in Proposition 8.3 one can make the error

probability upper bounded by 3. Let M = mT as in Lemma 8.2, we have

by setting e = ﬁ = the probability as in Lemma 8.2 is

0.2
272 log*(T'/ )
upper bounded by % since M > T'. The theorem follows by Lemma 8.1
by noticing that the event of the proposition is monotone (see the
discussion follows Lemma 8.1 by noticing that sup inf = UN) and we

apply Lemma 8.2 over the process V™7, O

Corollary 8.3. Let H C {0,1}* be a binary valued class with finite
VC-dimension, and p be arbitrary distributions over X'. For any convex
and bounded loss, we have

Fr(H, 57 (1)) < O <\/T VC(H) log(T /o) + VC(’H)) |
For logarithmic loss we have
Fr(H,57 (1)) < O(VC(H)log(T'/o)).

Proof. Let F. be as in Proposition 8.4, and let § = % Taking n = 2,
the tail probability in Proposition 8.4 is upper bounded by %
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Applying the EWA algorithm to F., we obtain the following regret
bound for bounded convex losses (cf. Theorem 7.1):

J(T/2) log | F.|+3VC(H)+0(1) = O (\/TVC(H) log(T/o) + VC(?—L)) ,

where we have used the standard bound on the covering number:
log |F.| < O(VC(H) log(1/e)) [76].

Applying the Smooth Truncated Bayesian algorithm (Algorithm 5.2)
to F. with truncation parameter %, we obtain the following regret

bound for the log-loss:
log | Fe| + 3VC(H) log T + O(1) = O(VC(H) log(T'/0)). O

Remark 8.1. Note that the first bound in Corollary 8.3 recovers the
bound in [27], while the second bound is new and improves a log T
factor for Log-loss if we use the VC(H) log T approximation bound of [27,
Lemma B.2] instead of our Proposition 8.4.

Corollary 8.4. Let H be a class of finite VC-dimension and S7 (u1, - - - , fix)
be the smooth process with multiple (known) reference measures jiq, - - - , fix-
Then

Fr(M,S7 (1, ) < O/ TVC(H) log(K T /o))
under bounded convex losses, and
Fr(M,P) < O(VC(H) log(KT/o))
under logarithmic loss and bounded mixable losses.

Proof. This follows directly from Corollary 8.3 and Proposition 8.1
and 8.2. 0

8.3 Regret for Unknown Distributions: Universal Case

We now analyze the minimax regret for the universal smooth processes.
In Section 8.3.1, we examine dynamically changing processes of cost K,
i.e., the class U}, and establish tight upper and lower bounds for
hypothesis classes with finite VC dimension under the absolute loss.
These bounds are further refined for specific loss functions, such as the
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logarithmic loss. In Section 8.3.2, we investigate the class U‘l’ (i.e., smooth
processes with a fixed but unknown reference measure) by establishing
a key connection between U‘l’ and the adversarial K -selection process.
We demonstrate our approach by proving sublinear regret bounds for
one-dimensional threshold functions.

8.3.1 The class UL with finite VC class

Before we analyze the class U}, we note that the processes in U}{
are highly non-stationary. Our first main technical ingredient is the
following decoupling of the random processes in U} into K (conditional)
i.1.d. processes.

Let X7 be an arbitrary process in U}{. We can extend X' into
another process VX7 in the following manner. The first 7 samples of
VET equal XT. For any conditional marginal vy, of X7 with k € [K],
we extend the sample X7 by sampling i.i.d. from vy, such that v, is used
ezactly T times in the sample VX7 for each k € [K]. Now, we denote
vk = Viyrs -+ Vi as the subsequence in VET that corresponds to v,
where ks are random indices.

Proposition 8.5. Conditioning on k; and V*1~1 the sample V*) is an
i.i.d. process of length T for all k € [K] (the V(®)s are not necessarily
independent for different k).

Proof. Note that conditioning on k1 and V*1~1  the distribution v}, is
determined. By definition of the conditional distribution for any events
AcC XT-Vand B C X, we have

Pr[ViT € A, Vi, € B| VY
=Pr[V T e A| VR Pr[Vy, € B VT e A, VR
=Pr[VT € A| VR (B),
where kalT_l ={Vi,, Vi, -, Vier_, }- The proposition follows by induc-
tion on T ]

It is important to point out that the extension of X7 to VET is
required for the decoupling to work. Otherwise, the constructed process
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V) is not necessarily i.i.d. (instead it is a random prefix of an i.i.d.
process). Now, to analyze the performance of a predictor ® on the
process X7, it is sufficient to study ® on each of the sub-sequences
V(%) Note that, this is generally a non-trivial task, since the predictor
can only access to each of V(¥ obliviously, i.e., it never exactly knows
the decoupling. The technical challenge is to ensure that the presence
of other V(¥)s do not affect the performance of the predictor on each
individual V(*),

The adaptive epoch-EWA algorithm. The epoch approach [69] is
a common way for dealing with distribution blind (i.e., universal)
cases. The algorithm proceeds as follows: we partition the time hori-
zon into [log T epochs, where each epoch s ranges from time steps
2% —1,---,2%F1 In epoch s, we perform Exponential Weighted Average
(EWA) Algorithm 3.1 on a finite expert class by selecting one function
from each equivalent class of H that agrees on the samples of the pre-
vious epochs. The rationale behind this approach is that as we obtain
more and more samples, we can learn the underlying hypothesis and
then use the learned hypothesis to make prediction for the next epoch.
However, this heavily relies on the assumption that the distributions
are stationary (i.e., the samples should have similar statistics among
different epochs). This does not hold even for U}.

Example 8.3 (Failure of epoch approach). Let X = {x1,x2} be the
instance space and H = {h1, ha} be the hypothesis class with h;(x1) =
ho(x1) =1, hi(x2) = 0 and ha(x2) = 1. We define distributions vy, v9
to be the singleton distributions on x; and x2, respectively. We assume
that the time horizon is T = 25! — 1. For the first s — 1 epochs, we use
V1 to generate samples and use vy for the last epoch. Now, after s — 1
epochs, the algorithm, as in [69], will choose the expert to be any one of
hi, he (since they agree on the previous samples). It is easy to see that
the algorithm must incur at least 7/2 regrets (the adversary simply
labels the following samples using h; that differs from the algorithm’s
selection) .

It can be shown that any predefined set of epochs cannot provide
bounds better than Q(T%/?), even for the simple class of Example 8.3
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Algorithm 8.1 Adaptive epoch-EWA algorithm
Input: Reference class ‘H and update threshold N

1: Initialize s + 0, E < 0, and H° + {h}, where h € H is arbitrary.
2: fort < 1toT do
3: Set ts < t, 7+ 1, m+ |H®|,and W" « {1,...,1} e R™.

4: while £ < N do
5: Set learning rate 7, + 81"%.
6: Receive x;.
T Make prediction:
i = Lz e Wy g
- m ) 3 .
Zi:l W'Lr ’
8: Receive y;.
9: Update weights:
Wi'l"+1 — Wi7‘e—m€(hf(xﬁ)7yn) Vi < m.
10: Update E:

heH,hseHs

EF+ max {z_: 1{h(xs,4e) # h° (X 4e)} : Vi < ts, h(x;) = hs(xj)} .

e=0
11: Increment t <~ ¢+ 1 and r < r + 1.
12: end while
13: Increment s <— s+ 1, reset t <+~ t — 1, and E < 0.

14: Define equivalence hy ~, hg if Vj < t, hi(x;) = ha(x;), where hy, hy €
H.

15: Let H® be the class that selects exactly one element from each equiva-
lence class under ~g.

16: end for
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(see Example 8.4 in Section 8.3.3). Our main idea for resolving this
issue is the adaptive epoch approach, presented in Algorithm 8.1. Note
that the "adaptive" in Algorithm 8.1 has two different meanings. First,
we select the learning rate 7, adaptively, and second, the error bound
E is computed adaptively (i.e., we change the epochs according to the
samples we observe). Our main result for this section is the following
performance bound of Algorithm 8.1.

Theorem 8.5. Assume that the loss £ is convex in the first argument
and upper bounded by 1, and H C {0,1}* is a class of finite VC-
dimension. If ¢; is the prediction rule of Algorithm 8.3 that takes
input H and N = /(T -VC(H)logT)/K, we have for all ¢ > 0 if
K3 -VC(H) <O(T'"¢/1ogT)

Fr(H,Uk) < O(\/KT - VC(H) log T),

where O hides a constant that depends only linearly on 1/e. Furthermore,
for any numbers d, K > 1 with (8Kd) - log(2Kd) < T, we have

sup (M, Uk) > \/KdT /64,
HVC(H)<d :
under the absolute loss. For any K < T the bound Q(+/ KT) holds for
threshold functions.

Sketch of Proof. We only sketch the main idea here and refer to Sec-
tion 8.3.3 for detailed proof. At a high level, our goal is to bound the
number of epochs (i.e., the number of times we reenter the while loop).
Note that, we are exiting the while loop only when the approxima-
tion error E of current expert class H® is larger than the threshold
N. Suppose we can upper bound the number of epochs by S. We
denote by 11, -+ ,Tg the lengths of each epochs. Note that for each
epoch s < S, the regret can be split into two parts: the regret against
expert class H® and the error of approximating H by H?®. For the
first term, we have by standard result (see Chapter 3 that the re-

gret is upper bounded by /2Ts|Hs| < /2T, - VC(H)logT, the last
(H)

inequality follows from |[H*| < TV¢). The second term is trivially
upper bounded by N, since we change epochs once the approxima-

tion error is larger than IN. Therefore the regret is upper bounded
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by S5, (v/2Ts - VC(H)1log T+ N) < SN + /25T - VC(H) log T, where
the inequality follows from Cauchy—Schwarz inequality Zle VT, <
VS Ty = v/ST. The key technical challenge is to show that if
we choose N = /(T -VC(H)logT)/K, we can ensure that S < O(K)
w.h.p. under any process in Uk, provided K3-VC(H) < O(T'=¢/logT).
This is achieved using the decoupling of U, together with a symmet-

ric argument for bounding the approximation errors on each of the
decoupled sub-sequences, see Lemma 8.15 and 8.16 in Section 8.3.3.
To prove the lower bound, we use a hard hypothesis class similar
to [27], together with a mized adversary-i.i.d. process based on the
concept of Littlestone forests that achieves the tightest dependency
Q(y/K -VC(H)T'). We note that a reduction to the Littlestone dimen-
sion as in [27] can only provide an Q(v/KT) bound. Our technical
contribution is to obtain a tight dependency on both VC(#H) and K.
See Section 8.3.3 for detailed proof. O

Remark 8.2. Note that, for K = 1, Theorem 8.5 recovers the upper
bound in [69] with lower computational cost (we only run O(1) epochs
for K = 1, while [69] runs O(log T") epochs). We believe the condition
K3 -VC(H) < T'7¢/1ogT is an artifact of our analysis and could be
eliminated via a further refined approach. We will establish a tighter
dependency on K for the full range K < T in the next section with a
slightly worse log® T factor. Furthermore, Algorithm 8.3 can be made
adaptive to K as well, see Remark 8.5 (in Section 8.3.3). Theorem 8.5
also establishes a fundamental distinction between the universal and
distribution aware case, as in Corollary 8.4 w.r.t dependency of K, i.e.,
K vslog K.

The adaptive epoch approach proposed in the previous section
results in tight bounds for the absolute loss and general convex bounded
losses. For some special losses such as the logarithmic loss and general
mixable losses, we provide tighter bounds on regret. We note that our
results in this section also provide tighter bounds for bounded convex
losses with parameters beyond the ranges of Theorem 8.5. We start
with the following generic upper bounding technique:
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A generic upper bounding technique: A crucial part of establishing
regret bounds when the reference distribution is known (e.g., [27]), is to
apply the EWA algorithm over a uniform cover of H (see Corollary 8.3).
This, unfortunately, is not available for our universal case, since we do
not know the reference measure p in advance. A general methodology
for dealing with such cases is via the so called stochastic sequential cover
as in Definition 7.1 of Chapter 7. This definition immediately implies
the following regret bounds by the standard expert algorithms (e.g.,
EWA), as in Theorem 7.1 and 7.2.

Proposition 8.6. Let G be a stochastic sequential cover of H w.r.t P
at scale o = 0 and confidence 3 = 1. Then Fr(H,P) < O(y/T'log|G])
under bounded convex losses and 77 (H, P) < log|G| under logarithmic
loss.

The above results lead us to the following general approach for upper
bounding 77 through stochastic sequential cover. Let H C {0,1}* and
P be arbitrary classes as defined above. We first find a prediction rule
O (X x{0,1})* x X — {0, 1} such that:

vl € P, Pryr.,r |superr(®,h,x7) > B(T,5)| <8, (8.3)
heH

where err(®, h,x7) = L 1{®(x, h(x1),- -, h(x¢_1)) # h(x;)} is the
cumulative error of ® under the realizable sample of h on x* and B(T, 3)
is an error bound depending on the confidence parameter 5 and the
time horizon T'. For any such prediction rule ®, we can then bound the
stochastic sequential cover size using the following lemma as shown in
Lemma 7.6.

Lemma 8.6. Let H and P be arbitrary classes and ® be a predictor
satisfying (8.3). Then there exists a stochastic sequential cover G of H
w.r.t. P at scale « = 0 and confidence 3 such that

log |G| < O((B(T,8) +1) - log T).

The upper bound on 77 (H, P) then follows from Proposition 8.6.
We remark that a crucial part for applying this approach is finding the
predictor ® and the upper bound B(T', ), which is generally non-trivial
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if the processes in P are non-stationary due to the requirement of finding
a bound on the form Pr[sup,].

The product distributions: We first consider a simpler random process
class and illustrate how our technique works. We say a distribution v”
over X7 is a product distribution of type K if there exist distributions
vi,-- vk over X such that v7 = [[L, v, where vy € {v1,--- vk}
Note that distributions s and the configuration of the marginals of v”
need not be fixed and are unknown to the learner (e.g., the processes
in Example 8.3 are product distributions of type 2). We prove the
following upper bound for the stochastic sequential covering for such

distributions:

Theorem 8.7. Let H be a binary valued class with finite VC-dimension,
and P be the class of all product distributions over X7 with type K.
Then, there exists a global sequential covering set G of H at scale
a = 0 and confidence 8 such that log|G| < O(K - VC(H)log?T +

log T'log(1/8)).

Proof. We start with the following technical lemma.

Lemma 8.8. Let Iy, --- , I7 be random variables over {0,1}7 such that
there exists a number C' > 0 and partition Jy,--- Jg C [T] of [T] such
that for all k € [K] and k; € Ji

C
Ell, | 171 < 7,

where k; is the tth element in Ji. Then for all 8 > 0, we have

T
Pr|> I, > 3CKlog(T/K) + TCK +1log(1/8)| < B.

t=1
Proof. Let I/ = I — E[I; | I'"!], we have I] form martingale differences.
We now analyze the conditional variance of I, i.e., YL E[I'? | It~1].
We compute the variance for each partition Ji. For any k; € Ji, we
have |1} | <1 w.p. p; and |I{| < p; w.p. 1 — p;, where p; < min{%, 1}.
Therefore, we have ZLﬂ E[I’it | IF1] < ZLﬂ pe +p? < Clog|Ji| +
3C. Here, we have used the fact that >.5°; p? < 2C and Z‘tﬂ % <
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C'log |Ji| + C. The second inequality is straightforward; we prove the
first inequality. We split the summation into %, p? + Y% p? <
C+Y e %2 < 2C, where the first inequality follows by p; < min{%, 1}.
Now, the lemma follows by a simple application of the Bernstein’s
inequality Lemma 2.10 and noting that S°5_, log |J| < K log(T/K)
since YK |y =T. O

Proof of Theorem 8.7. Our proof exploits the symmetries of the product
distributions of type K. At a high level, we will show that there exists
an algorithm, i.e., the I-inclusion graph algorithm [67], that achieves
O(KlogT + log(1/p)) cumulative error bound w.p. > 1 — g if the

features x*

are sampling from a product distribution of type K and
the labels y7 are realized by some h € H. Suppose this holds, then one
will be able to derive the covering size bound through Lemma 8.6.

We now establish the realizable cumulative error bound. Let ® be
the I-inclusion graph algorithm, as in [67], and v" be an arbitrary
product distribution of type K. We partition the index set [T] into K
groups Ji,--- , Jig such that for any indices 4, j belonging to the same
group Ji, we have v; = v;. Note that such a partition will only be used
in our analysis and it is unknown to the algorithm ®. Denote by =«
a random permutation such that the restriction of 7 to any J; with
k € [K] is uniform random permutation over Jj, and is independent for
different k. Let A be an arbitrary event over x. We have by symmetries
of the product distribution that:

Pr, . ,r[A(XxT)] = ExPror,r[AX™T))] < sup Pr [Ax™T))].
X

It is therefore sufficient to fix the features x? and prove the cumulative
error bound under permutation 7. For any h € H, we denote I to be
the indicator of the event

(™ {h(xn(1)): 5 K1) }) # B(Xnr))s

i.e., the predictor ® makes an error at time t for the realizable sample
of h. We claim that

EW[I[L | X7T(t+1)) e 7X7T(T)] S
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where g, is the position of ¢ in Jy, and k; € [K] is the index such
that ¢t € J,. To see this, we have by [67, Theorem 2.3(ii)] that for
any realization x!, there are at most VC(#H) positions j € [t] such that

O(xt, h({x"))}) # h(x]) where x' ; is the sample of x' by removing x;
and h({xt }) = {h(x1), -, h(xj- 1) h(xj41),- -+ ,h(x¢)} be the labels
of h on x! .. Thus, there are at most VC(H) such indices in Jg,; by

t we have I =1 only if such indices are switched

( )

restrlctmg T on X',

to x; under T, Wthh happens w.p. < . Now, by the permutation

invariance of 1-inclusion graph predlctor we have that It is completely

determined by Xz (), -+, Xz (7). Therefore, we have
VC(H)
ErlI{' | Iy, o 11 = ExlI | Xnnys o 5 Xn(m)] < —
This implies that I}, --- I% form the reversed sequence as in Lemma 8.8.
Invoking Lemma 8.8 with C' = VC(H), we have
T
Pr, [z I > O(K - VC(H) log(T/K) + log(1/8)) | < 5.
t=1

Since there are only TVE(*) functions restricted on any x? by Sauer’s
lemma, we have by union bound

Pr, [supz.ft > O(K - VC(H)log(T/K) + log(TV<™ /8)) | < B.

hE’Ht 1

The upper bound on the stochastic sequential covering number now
follows by Lemma 8.6. O

O]

Thus upper bounds on the regret follow from Theorem 8.7 and
Proposition 8.6.

Corollary 8.9. Let H be a binary valued class of finite VC-dimension
and P be the class of all production distributions of type K. For any

K,T > 1 we have 7p(H,P) < O(\/KT -VC(H) log? T) under bounded
convex losses and 77 (H, P) < O(K - VC(H) log? T') under log-loss.
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The class U}{: The 1-inclusion graph algorithm for product processes
in the previous part relies heavily on symmetries in the product distribu-
tion. This, unfortunately, does not hold for general processes in U},. Our
main technique to deal with this issue is to replace the 1-inclusion graph
predictor with the ERM rule, together with a perturbation argument for
establishing a realizable cumulative error bound, as in (8.3). This allows
us to establish the following stochastic sequential covering bound:

Theorem 8.10. Let H be a binary valued class of finite VC-dimension.
Then there exists a stochastic sequential covering set G of H w.r.t. Uk
at scale a = 0 and confidence 5 > 0 such that

log |G| < O(K(VC(H)log® T
+ log® T'log(K/3)) log(VC(H) log T log(K /8))),

where O hides an absolute constant independent of K,VC(H), T, (.

Sketch of Proof. We sketch only the high-level idea here and refer to
Section 8.3.4 for the full proof. We show that for any process in Uk and
the ERM predictor ®, the realizable cumulative error (see Equation (8.3))
is upper bounded by B(T, ) < O(K (VC(H)log® T+log T'log(K/B))-A),
where A = log(VC(H) log T log(K/[3)). To achieve this, we first decouple
the process in Uk into K conditional i.i.d. processes (Proposition 8.5).
We then establish the realizable cumulative error bound on each of the
decoupled sub-sequences (which are conditional i.i.d.). The key technical
justification that allows us to do so is that an ERM rule with additional
realizable samples is still an ERM rule. This allows us to bound the
cumulative error for each decoupled sub-sequence independently even
though we can only access them obliviously. We emphasize that to
bound the realizable cumulative error for ERM rule even for i.i.d.
process is still a non-trivial task, since we require a Pr[sup;] type bound
for Lemma 8.6 to apply. To resolve this issue we introduce a novel
perturbation argument, as presented in Lemma 8.18, which provides a
generic way of converting a sup;, Pr bound to a Pr[sup;,| bound for any
finite VC class with ¢.i.d. sampling. O

We now have the following regret bounds for VC-class. See Sec-
tion 8.3.4 for detailed proof.
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Corollary 8.11. For VC class H we have

Fr(H,Uk) <0 <\/A KT -VC(H) log? T)

under bounded convex losses and 77 (H, UL ) < O(A - K - VC(H)log® T)
under log-loss and bounded mixable losses, where A = log(VC(H) log(KT)).
Moreover, for Kd < T/logd, we have supy vc(u)y<ar(H, Uk) >
dmax{K,log(T/d)} under log-loss.

8.3.2 The class 0‘1’ with threshold functions

We now study the universal smooth process U] with fixed (but unknown)
reference measure, where o € (0, 1] is any positive real 2. We start with
the following reduction. Let p be an arbitrary distribution over X.
We say a random variable X is K-selection w.r.t. p if there exists
a deterministic function f such that X = f(VE) ¢ {Vi,---,Vk},
where VE ~ @K We say a random process over X7 is adversary K -
selection w.r.t. p if for all t < T the conditional marginals v4(X; | X'~ 1)
are K-selection w.r.t. u almost surely. In Section 8.3.5, we prove the
following key lemma that relates the class 0‘{ to the adversary K-
selection processes.

Lemma 8.12. Let A C X7 be any event. If for all adversary K-selection
process X1 we have Pr[X'T € A] > 1—p, then for any o-smooth process
XT € U7 we have Pr[XT € A] > 1 — 28, provided K > w.

Lemma 8.12 shows that to bound the prediction performance for
~1 it is sufficient to bound the performance of the adversary K-
selection processes. Perhaps surprisingly, this reduction essentially
loses no information, since the adversary K-selection processes are
also € Ui/ K This follows from the fact that for any event A we have
Prif(VE) € A] <1 — (1 = Pry,[V € A)E < KPry.,[V € 4], ie.,
the conditional marginals 1, must be 1/K-smooth w.r.t. p.

Our main result of this section is the following stochastic sequential
covering bound for the threshold functions w.r.t. adversary K-selection

processes. See Section 8.3.5 for a detailed proof.

2Note that, the classes Uk and U do not include each other, for all o € (0,1).
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Theorem 8.13. Let H = {ho(z) = 1{x > a} : z,a € [0,1]} be the class
of 1-dimension threshold functions and P be the class of all adversary
K-selection processes. Then there exists a stochastic sequential covering
set G w.r.t. P at scale @ = 0 and confidence 8 > 0 such that

log |G| < O(\/ KT 1og2KT2/p)).

Sketch of Proof. We sketch the main idea here and refer to Section 8.3.5
for a detailed proof. We stress that even though the threshold functions

may be simple from a classical learning theory perspective, the proof of
Theorem 8.13 is not. This is due to the complex structure of adversary K-
selection processes. Our proof follows a similar path as in Theorem 7.11
but with a substantially more sophisticated analysis. To do so, we
maintain a realization tree, with each node of the tree labeled by a
subset of H. We expand the leaves of the tree every time we receive
a sample X; by splitting the associated subset of H according to the
labels on X;. Our main technical contribution is to bound the mazimum
depth of the realization tree to be O(\/KT log(2KT?/3) w.p. > 1 — B.
This relies on a careful analysis of the splitting process. The bound

for the stochastic sequential covering will then follow from a similar
construction as in Theorem 7.11. O

We complete this section with the following bounds for the regret.

Corollary 8.14. Let H = {hq(z) = 1{z > a} : z,a € [0,1]}, then

Fr(H,09) < O <\/ (T/o) 1og2(T/a)> ,

under bounded mixable losses and logarithmic loss. For bounded convex

losses, we have

~ T3/21og(T
fT(H,UﬁéO( i /U)>~

Proof. This follows directly by Theorem 8.13, Lemma 8.12 and Propo-
sition 8.6. O

Remark 8.3. Corollary 8.14 establishes sublinear regret as long as
o~! <« T/log?T. However, it should be noted that the regrets pre-
sented here are not quantitatively optimal. For recent developments
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that characterize the exact minimax regret for U‘{ and general finite
VC classes H, we refer the reader to [77].

8.3.3 Proof of Theorem 8.5

Before we present a formal proof of Theorem 8.5, we first develop some
technical concepts that are necessary for our proof. Let H C {0, 1}X be
a binary valued class. For any i < j < M and x™ € XM we define the
agreed-mismatch number of H on discrete interval [i, j] := {3,941, -+ ,j}
to be

J

AM(H, 4, j, XM) = . S}?PH {Z {hy(x¢) # ha(xe)} : VE < i, ha(xe) = hz(xt)} :
1,h2€ t—i

Note that the error bound E in Algorithm 8.3 at the end of each epoch

is always a lower bound for the agreed-mismatch number at that epoch

(with 7,7 being the start and end of the epoch, respectively). We have

the following key lemmas for bounding the agreed-mismatch number:

Lemma 8.15. Let H C {0,1}* be a class of finite VC-dimension and p
be an arbitrary distribution over X'. Then for any i < j < M € NT, we
have for all £ > 0

Pror e [AM(H, i, j,xM) > E| < 2VC00losi—E)/3,

Proof. We use a symmetric argument as in the proof of Lemma 8.2.
The event AM(H, i, j,xM) > E is equivalent to

A= {Elhl, ho € H s.t. Vt < i, hi(x¢) = hi1(x;) and Z 1{h1(x¢) # ha(xt)} > E} .

t=1

By symmetries of i.i.d. samples, we can fix x/ and perform a uniform
random permutation 7 over [j]. Now, for the event A to happen, there
must be some hi,hy € H that differ on at least E positions in x7.
Denote B > E to be the number of mismatches of k1, ko on x7. In order
for the event A to happen, one must not switch any t € [i, j] for which
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hi(x¢) # ha(x¢) to [1,i — 1] under permutation 7. This happens with
probability upper bounded by (using a simple combinatorial argument):

UB) (1 _ Z')B < o~ @Bi < ~GE)i,
(B — N i/ N

where we have used the fact that % > ‘;T_f for allb > a >t and e~ (#B)/J

is decreasing on B.

The lemma follows by applying a union bound on all the pairs (hy, h2)
restricted on x’ and an application of Sauers’s lemma (Lemma 2.1), and
Pr,; [A(x7)] < supy, Pry[A(x™))] due to symmetries of i.i.d. samples.

O

The following lemma is the key element of our proof.

Lemma 8.16. Let H C {0,1}* be a class of finite VC-dimension and
i be an arbitrary distribution over X. For any F < M € NT and
xM ¢ XM we denote by A the event that there exists

"> log M
log(E/(2VC(H) log M + log(M?2/3)))
and 1 =14 < iy < --+ <ipy1 = M such that

Vi <n, AM(H,ij,ij41,x7) > E.
Then
PI‘XMNH®M [A] < 6.

Proof. Let B;; be the event that {AM(#,4,5,xM) > E and j < (E -
i)/(2VC(H)log M + log(M?//3))}. By Lemma 8.15, we have for all i, j

and 8 >0
p
Using the union on all the pairs (4, ), we have
Pr[Eli,j, BZ‘J'] S ﬁ
Let B =(\; j ~Bi;. Then Pr[B] > 1 — 3. Note that the event =B; ;
implies that if AM(H,i,5,x™) > E then
J =z :
2VC(H)log M + log(M?/p)
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Conditioning on the event B happening, we have, if event A (defined in
the statement of Lemma 8.16) happens then

Vi <n, djen > (E i)/ (2VC(H) log M + log(M?/ ),
since event A implies AM(H, %41, ij,xM) > FE for all j < n. Note that
19 > F, hence by induction
E n
> .
Intl = <2VC(’H) log M + log(M?2 /5))
However, since we also have i,41 < M, we must have

< log M
~ log(E/(2VC(H) log M + log(M?/3)))’

This contradicts the definition of A (the event A requires number n to
be larger than the above quantity) and implies that conditioning on
event B, event A cannot happen. Therefore, we have Pr[A | B] =0, i.e.,
Pr[A N B] = 0. This implies

Pr[A] = Pr[AN B]|+ Pr[AN-B] < Pr[AN-B] < Pr[-B] <
as needed. O

Remark 8.4. We remark that the results in both Lemma 8.15 and 8.16
hold for a general exchangeable process as well. Note that these two
results cannot be applied directly on the processes in U}( since they
require the underlying process to be exchangeable. Our key approach,
as in Proposition 8.5, is to decouple the process in U}( into conditional
1.1.d. processes.

We now prove the upper bound of Theorem 8.5.

Proof of Theorem 8.5 (Upper Bound). Let vT € Ul be an arbitrary
dynamic changing process with cost K. We denote by X7 the random
process generated by vT. Note that the main difficulty here is to deal
with the dependency among the samples in X”. Our key idea is to
extend the sample X7 into a coupled sample VET such that the first T
samples in VAT match X7 and each conditional distribution selected
for generating X7 contributes exactly T samples in VET. We denote
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vk = Viys -+ s Vi to be the samples generated by the kth conditional
distribution (that is used to generate X7), where k < K. We also denote
by X %) the truncated sample of V*) on VT, By Proposition 8.5, V*) is
a conditional i.i.d. process, conditioning on V*1~1. Therefore, the uncon-
ditioned process V¥ is a mizture of 4.i.d. processes, thus ezchangeable.
Note that the truncated process X *) need not be exchangeable.

Taking N = /(T -VC(H)logT)/K in Algorithm 8.1, we show that
the claimed regret upper bound holds. Let £ = N/K and

B logT
"7 log(E/(2VC(H) log T + log(T?K/B)))

+ 1

We show that w.p. > 1 — 3, the parameter s in Algorithm 8.1 is upper
bounded by nK. Suppose otherwise, we have the algorithm reenter
the while loop at least nK times. Denote i1 < i3 < --- < ixy, to be
the time steps of reentering the while loop. Note that by construction
of Algorithm 8.3, we exit the while loop only if the agreed-mismatch
number at current phase is larger than N. Therefore, we have, for
each of the phases ¢;y1 — 4;, there must be some £ < K such that
X®*) contributes at least N/K mismatches. This implies that there
exists some k < K and indexes t1,--- ,t, (which is a sub-sequence of
i1, ,ink) such that X (%) contributes at least N /K mismatches in
all the phases t; 1 — t; with j <n (note that here the phase t;11 —t;
may combine multiple phases of form i;41 — 7;). Therefore, the agreed-
mismatch number restricted only on X *) at each phase tjiy1 —t; is
larger than N/K. This is because the phase t; 11 — t; includes a sub-
phase 7;41 — 4; such that the agreed-mismatch number restricted on
X&) for the sub-phase is larger than N/K. Taking hi, hs to be the
functions that whiteness such a agree-mismatch number, we have hy, ho
also agrees on x%~! and differs on at least N/K positions on tjiv1 —t.
Hence the agree-mismatch number restricted on X *) on phase tjiv1—1;
is also larger than N/K. Since X (k) is a prefix of V(¥ this implies the
event of Lemma 8.16 restricted on V%) happens. By Lemma 8.16 and
exchangability of V(*)| we have the event A in Lemma 8.16 with the
selected n happens w.p. < /K for each 17408 Using a union bound on
all the V(®)s we have the assumed event (i.e., s > nK) happens w.p.

< B.
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Taking 5 = % and conditioning on the event s < nK, we now split
the regret into two parts — one that is incurred by the mismatches and
the other incurred by the adaptive EWA algorithm. Let 17, --- ,Ts be
the lengths of the the epochs. We have, by standard results of Chapter 3,
that the regret contributed by EWA algorithm is upper bounded by

S \ATu - VC(H) log T < \/4sT - VC(H) log T

a=1

< O(\/KT -VC(H)log T).

where the first inequality follows from Cauchy—-Schwartz and ), 7, =T,
while the second inequality follows from s < nK and n = O(1/¢) pro-
vided K < (T /(VC(H)logT))"/?. For the number of mismatches,
each epoch contributes at most N mismatches and there are at most s
epochs, therefore the number of mismatches is upper bounded by

sN < O(\/KT -VC(H)log T).

Finally, the bad event s > nK contributes at most O(1) regret,
since the loss is bounded by 1 and the event happens with probability

1
<7 O
Remark 8.5. Note that the upper bound in Theorem 8.5 can be made
adaptive to K (i.e., without knowing K') as well via a simple doubling
trick. To see this, we set K = 1 initially and run Algorithm 8.1 as in
the proof above. Once the algorithm has updated for more than nk
epochs, we update K being 2K and rerun the algorithm with the new
K. Taking 8 = %, we have by union bound (on the updates of K) w.p.
>1- % there can be at most [log K] updates if the process is in Uk..
Therefore, the regret is upper bounded by

[log K]

kZ::l 0 (\/2’“T -VC(H) logT) =0 <\/KT -VC(H) logT> :

as needed.

We now prove the lower bound of Theorem 8.5.
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Proof of Theorem 8.5 (Lower Bound). Let X = [0,1] x {1,2,---,d}.
We construct the following class of product threshold functions

H = {ha(z,b) = 1{z > ay} :a € [0,1]¢, (z,b) € [0,1] x [d]}.

It is easy to see that VC(H) = d, since the set (0.5,1),---,(0.5,d) is
shattered by H, and any d + 1 points must have two points with the
same index in [d], which cannot be shattered by H.

We now describe a strategy for selecting y” and {v1,--- , vk} that
achieve the claimed lower bound for any prediction rule (possibly ran-
domize) under absolute loss. Let 7 be a Littlestone tree for threshold
functions {hq(z) = 1{z > a} : a,x € [0,1]} of depth K, which is a
[0, 1]-valued full binary tree such that each path can be realized by a
threshold function (see e.g., [35]). This must exist since threshold func-
tions have infinite Littlestone dimension. We take d copies {11, -+ , 74}
of 7 (i.e., the Littlestone forest). We select y* uniformly from {0, 1}7
and select the vgs in the following manner: let I, --- , I; be d pointers
such that each I, points to a node in 7, for all b € [d]; initially all the
Iys point to the roots of 738, respectively. We partition the time horizon
into K epochs, each of length T/K. At the beginning of the kth epoch,
we define the distribution

ve = Uniform{(V(11), 1), (V(I2),2) - -, (V(I4),d)},

where V(1) € [0, 1] denotes the value of the node in 7, pointed to by
index I. After the epoch k, we update the indices Ips in the following
manner: for any b € [d], if the number of 0Os is more than the number of
1s for the labels in 7 corresponding to sample (V(I;),b) during epoch
k, we move I to its left child, and move to its right child otherwise.

We now show that the strategy described above achieves a regret
lower bound Q (v K dT) for any prediction rule provided % > log(2Kd).
To see this, we note that by the selection of 7, any prediction rule must
incur T'/2 actual expected cumulative loss. For any k € [K] and b € [d],
we denote nyp to be the number of appearances of (V(I),b) during
epoch k. We have by the multiplicative Chernoff bound [78, Theorem
4.5(2)] that

r -T
> — | > 1 — /(SKd)_
Pr{nk7b_2Kd}_l e
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Assuming % > log(2Kd), then by union bound on all pairs (k,b), w.p.
> 1, nyp > 50 for all k € [K] and b € [d]. We now condition on that
such an event happens, which is independent of y”. By the Khinchine’s
inequality, discussed in Chapter 2, the expected number of 1s of the

labels corresponding to (V(I,),b) in epoch k is bounded away from “£2

by \/nks/8 > /T/(16Kd). By our selection of vxs, we know that there
must be some h € H such that the difference of the expected (over
randomness of y”) cumulative losses incurred by the predictor and by
h is lower bounded by:

i Xd: VT/(16Kd) >/ KdT/16.
k=1b=1

This implies that there must exist some y” such that the regret against
the predictor is lower bounded by /KdT/16. Since our conditioning
event on x’ happens w.p. > 1/2, the expected worst case regret is lower
bounded by \/KdT/64.

Finally, to see the unconditional Q(v/KT) lower bound, we can
replicate the argument above with b = 1 and note that ng; = T/K
holds always without invoking the multiplicative Chernoff bound. [

We now provide a supplement to Example 8.3 that demonstrates
the failure of the epoch approach with any predefined epochs.

Example 8.4. Let H, v1, 12 be as in Example 8.3. Now, for any prede-
fined epochs and number M, there are two cases: (i) there exists an
epoch of length larger than M; (ii) all of the epochs have lengths less
than M. For case (i), we can replicate the argument as in Example 8.3
to obtain an Q(M) lower bound. For case (ii), we use vy to generate
samples for all the T steps. Since the EWA algorithm is deterministic for
absolute loss (though it can be interpreted as a randomized algorithm
for miss-classification loss), by standard lower bounds (e.g., [35, Lemma
14]) for any n € [T], there must be some y" and h; € {hi,ha} such
that the regret of EWA on 3" against h; is lower bounded by Q(y/n).
Denote n1,--- ,nr to be the length of all epochs such that n; < M for



8.3. Regret for Unknown Distributions: Universal Case 143

all [ € [L]. We claim that:
L
SV = (T - M)/VM. (8.4)
=1

This follows from the inequality va + 1+ vb—1 < /a+ vb for a > b
(since the function y/z — v/x — 1 is monotone decreasing). Therefore,
one can 'merge" the n;s with as many components equal to M as
possible, yet the LHS of (8.4) does not increase. Since there are at
least (T'— M )/M such components after the "merge", (8.4) holds. By
the above discussion, each epoch [ corresponding to some y™ and h;,
with regret of EWA against h; is lower bounded by €(,/n;). Therefore,
there must be a subset A C [L] corresponding to the same h; such
that Yyc 4 /M > (T — M)/(2v/M). We choose the label y™ at epoch
[ for I € A and the label h;(x2) for all other epochs. This yields the
lower bound Q((T — M) /v/M) hence also Q(max{M, (T — M)/ M}) >
Q(T?/3), where the minimum is attained when M = T2/3 leading to
ir > Q(T?3).

8.3.4 Proof of Theorem 8.10 and Corollary 8.11

For any hypothesis class # C Y%, the ERM rule is any function
ERM : (X x Y)* — H such that for all t > 1 and (x!,3%) € (X x V),

we have
t t
S H{ERM(x!, y)[xi] # i} = h%ﬂz {h(x;) # yi}-
i=1 i=1

Let ®: (X x J)* — Y% be a prediction rule, h € H and xT € X7, we
denote the cumulative error of ® under the realizable sample of A on
xT as (recall the definition in (8.3)):

T
err(®, h,xT) = 3 H{®(x !, {h(x1). - hixem) }lxd # hix)}.
t=1

We begin with the following high probability cumulative error bound
for the ERM rule under realizable ¢.2.d. sampling:
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Lemma 8.17. Let H C {0,1}* be any class with finite VC-dimension
and ERM be an arbitrary ERM rule of H. Then for any distribution pu
over X and B > 0 we have w.p. > 1 — 3 over x! ~ pu®7

sup err(ERM, h,xT) < O((VC(H)log? T + log(1/8) log T) - A)

heH
where A = log(VC(H)logT log(1//)) and O hides absolute constant
independent of VC(H), T, (3.

Note that even though the samples x” in Lemma 8.17 are i.i.d., the
predictions made by ERM rule are not independent, which is the main
technical difficulty in proving Lemma 8.17. To resolve this issue, we first
establish the following key lemma which provides a general approach
for converting a sup, E type bound to a Esup;, bound. Our main
proof technique is a perturbation argument, which is the main technical
contribution of this section. For any prediction rule ® : (X x {0,1})* —
{0,1}* and I C [T], we define a perturbed function ®! such that for
all xt, y* we have

(I)[(Xtv yt) = (b(xt? gt)’
where gy =y ift €l and gy =1—y if t € 1.

Lemma 8.18. Let H C {0,1}* be a class of finite VC-dimension, x be a
distribution over X', and F, is an e-cover of H w.r.t. u (see Lemma 8.2),
where € = ﬁ Then for any prediction rule ® : (X x {0,1})* — {0,1}*
we have for all m,n € NT

Pryr_,er [sup err(®,h, xT) > m +3VC(H) +n
heH
I T 1
< Pryr.er | sup sup err(®°, f,x" ) >m| + o
FEFe IC[T),|I|<3VC(H)+n T

Proof. Let A be the event that
T
A={x":sup inf 1{h(x X)) <3VC(H)+n;.
{5 sup g 3100 # st} < €0

We have by Lemma 8.2 that Pr[4] > 1 — & (taking M = T in the
lemma). Conditioning on the event A happening, we have for all h € H,
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there exists f € F, such that there are at most 3VC(#H) + n positions
t € [T] such that h(x;) # f(x¢). Denote I C [T] to be the set of such
positions. Then ® and &' have the same outputs on x’ with labeling of
h for all t € [T]; meaning that

err(®, h,xT) —err(®!, £, xT) < 3VC(H) +n,

since only the positions for which h(x;) # f(x¢) contribute 1 to the
difference of errors. This implies

sup inf inferr(®, h,x7) —err(®L, f,x1) < 3VC(H) + n.
heH fE€EFe 1

The result follows by noting that
sup inf inflerr(®, h,x7) — err(®L, f,xT)] =

hep fe€Fe 1
= sup err(®, h,xT) — sup sup(®!, f,x7),
heH feFe 1
and removing the conditioning on A by a union bound. O

Lemma 8.18 is interesting since it reduces an event of form sup,,
with infinite 7 to an event of form sup; ; with finite Fc and {I C [T7]:
|I| <3VC(H)+ n}. The latter can be handled using union bounds if we
are able to obtain a high probability error bound for ® for any such f
and I. The following lemma establish such a result for ERM rule with
1.1.d. sampling.

Lemma 8.19. Let H C {0,1}? be a class of finite VC-dimension, u be

a distribution over X. For any h € H and I C [T| with |I| < e for some
integer e > 1, we have for all § > 0

Pryr. o7 {err(ERMI7 h,x™) > O(log T(VC(H)log T + e + log(1/p)) - A)} <8,

where A = log(eVC(H)log T log(1/5)), ERM is any ERM rule, and O
hides absolute constant independent of e, VC(H), T, 5.
Proof. Fix any h € H and I C [T] with |I| < e. We denote by

ERM! the function generated by ERM? using samples x?, . Let err; =
Pry,[ERM! (x) # Rh(x)]. We now claim that for all ¢ € [T] we have

(VC(H)logt + e+ 1log(1/8)) log(eVC(H) logtlog(l/ﬁ)))]
t

<B. (8.5)

Pry: et [erry > O (
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To see this, we use a symmetric argument. Let 57,52 be two i.i.d.
samples of u both of length ¢. For any hi,he € H, we define distance
d(h1, he) = Prypulhi(x) # ha(x)]. We define two events

Al = {Elh' € H, d(h,h") > € and Z 1{h(s) # h(s)} < e} ,

s€eST

and

SEST

Al = {Elh’ € H, d(h,h') > € and Z 1{h'(s) # h(s)} < e but

> W (s) # h(s)} << et/2} .
S€ESy

Using the same argument as in Lemma 8.2, we have Pr[A?] < 2Pr[A}].
By symmetries of i.i.d. distributions we can fix S7 U .Sy and perform a
random permutation 7 that switches coordinate ¢ of S; and Sy w.p. %
and independent of different i € [¢]. In order for the event A% to happen
we cannot switch more than e elements for which ERM! (s) # h(s) with
s € Sy to S1. This happens with probability upper bounded by

1 & (et/2 —et)2+ (e+1) log(et/2)
et /2 ; ( 7 ) <2 :

Using a union bound on functions of H restricted on S7 U S, we have

PI‘[AS] < 2VC(H) logtfet/2+(e+1)log(et/Q)'

Taking

e—c. <(VC(H) log ¢ + € + log(2/3)) log(eVC(H) logtlog(2/ﬁ))>
i

one can make Pr[A%] upper bounded by 3/2 for some absolute constant
¢ > 0. The Claim (8.5) follows by noting that err; > ¢ implies event A?
happens by construction of ERM.

We now upper bound the cumulative errors of ERM!. Let event

G, = {errt <e. ((VC(’H) logt + e+ 1og(4T/ﬂ)t) log(eVC(H) logtlog(4T/ﬂ))> } ’
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and indicator
I = {ERM!_,(x¢) # h(x;) and G;_1}.

We have Pr[Gy] > 1-3/(2T) for all t < T'. Note that G;_; is independent
of x4, thus we have (since [; = 1 happens only when G;_; occurs and

ERM? | (x) # h(xt))

B[l | I, o] < <(VC(H)logt+e+log(4T/ﬁ))log(eVC(”H)1ogtlog(4T/6))
, ylt—1] S € ¢

(8.6)
By Lemma 8.8 with K = 1, C' being the numerator of Equation (8.6)
and upper bound logt by log T, we have for sufficiently large T" that

T
Pr lz I, > de - log T(VC(H)log T + ¢ + log(4T/B)) - A + log(2/ﬁ)] < 8/2,

t=1

where A = log(eVC(H)logT log(47'//3)). Note that, the events G =

Neejr)Gi—1 and ERM!_,[x;] # h(x;) together imply that I; = 1. There-

fore, using the fact that Pr[A] < Pr[ANG]+ Pr[-G] < Prl[ANG]+ /2

for any event A, we conclude

Pror. ot [err(ERMI, h,xT) > O(log T(VC(H) log T + e + log(1/5)) - A)] < 8.
This completes the proof. O

Proof of Lemma 8.17. By Lemma 8.18, it is sufficient to upper bound

(8.7)

Pryr et [sup sup err(®!, f.xT) > m)| .
FEFe IC[T],|T|<3VC(H)+n

We now take n = log(2/8)/log T in Lemma 8.18, i.e., A= = 3/2. By
Lemma 8.19 with e = 3VC(H) + n together with a union bound on F.
and {I C [T]:|I| <3VC(H)+ n} and letting

m = O(log T(VC(H)log T + e + log(2B/5)) - A)

where A = log(eVC(H)log T log(2B/B)) and B = |F¢| - |{I C [T] :
|I] < 3VC(H) + n}|, one can make the error probability (8.7) upper
bounded by (/2. We now observe that log|F.| < O(VC(H)logT) and
log |{I C [T7]: |I| < 3VC(H)+n}| < O(VC(H)log T+log(1/3)). Putting
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everything together and simplifying the expression, we have w.p. > 1—0
over x© ~ pu®T

sup err(ERM, b, xT) < O(log T(VC(H) log T

heH
+ log(1/8)) log(VC(H) log T'log(1/8)))-

This completes the proof. O
The following lemma is the key element in our proof.

Lemma 8.20. For any random process X! € U}(, we denote VET and
vk = Viys -+, Vip for k € [K] as in Proposition 8.5. We have for all
k€ [K] wp. >1— 3 over VET

T

sup S L{ERM(VS ™ {A(V2), - (Ve -1) DIVi] # (Vi) <
€M ¢—1

O((VC(H)log? T + log T'log(1/3)) log(VC(H) log T'log(1/4))),

where ERM is any ERM rule and O hides absolute constant independent
of VC(H), T and log(1/5).

Proof. By Proposition 8.5, we have V%) is an 4.i.d. process conditioning
on V¥1=1 The key observation is that the ERM rule over VET restricted
on V%) is still an (randomized) ERM rule, since we have assumed that
the samples are realizable. Conditioning on any V*1~1, the upper bound
then follows by Lemma 8.17 since it only requires that the ERM rule at
each time step k; is independent of Vj, and it does not depend on how
the ERM functions are selected (even if the selections are randomized).
To remove the conditioning on V¥1=1 we use the following law of total
probability: for any event A C VET we have

Pr{A] = By, , [Pr[A| VY]] < _sup Pr4] yhi-l),
1,VEk—1

The lemma now follows by taking A to be the event in the statement of
the lemma. O

We now ready to prove Theorem 8.10.
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Proof of Theorem 8.10. We first observe that for any prediction rule
the cumulative error on X7 is less than the cumulative error on VAT,
Using Lemma 8.20 and a union bound on all the K subsequences vk,
we have for any ERM rule ERM, w.p. > 1 — 3 over VET the cumulative

error

sup err(ERM, h, VET) < O(K (VC(H)log? T + log T log(K/B)) - A),
heH
where A = log(VC(H)logT log(K/B)). Since we have the following
err(ERM, h, XT) < err(ERM, h, VET) the sequential covering size then
follows by Lemma 8.6. O

Finally, we prove Corollary 8.11.

Proof of Corollary 8.11. The upper bounds follow directly by Proposi-
tion 8.6 and Theorem 8.10 by taking 5 = % We only need to prove the
lower bound for log-loss. For the Q(Kd) lower bound, we consider the
same hard class H as in the lower bound proof of Theorem 8.5 and the
Littlestone forests y,--- , 74 with pointers Iys. We partition the time
steps into K epochs. At each epoch k, we use the same v, as in the
lower bound proof of Theorem 8.5 to generate samples. We move to
the next epoch if all elements in the support of v, (which is a uniform
distribution) have appeared at least once in the sample. We then change
the pointers I, of each tree 7 in the following manner: if the prediction
made by the predictor on the first appearance of (V(I),b) is > %, we
update I} to its left child, and update to right child if the prediction is
< % It is easy to verify that the expected regret is lower bounded by
Q(Kd), provided Kd < T'/logd by the coupon collector problem. The
lower bound for Q(dlog(7T'/d)) as discussed in Chapter 7.5. O

8.3.5 Proof of Lemma 8.12 and Theorem 8.13

Proof of Lemma 8.12. The proof is an operational interpretation of
the coupling argument as in Proposition 8.3. Let p be the reference
measure that defines the o-smooth process X7 (with v” being the joint
distribution of X7T). For any m € N, we denote V™7 to be an 4.i.d.
process with marginal p and I™7 to be an 4.i.d. process with marginal
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of uniform distribution over [0, 1] that is independent of V™. We now
construct a coupling between X7 and V™ I"™T . Suppose we have
constructed X*~!, we have that the conditional density v; = vy (X; |
X'=1 is determined and we denote the density v;(x) = ‘é—ll’f. To construct
Xy, we define the random set Sy as in Proposition 8.3 in the following
manner: for any V,,;_1)4; with i € [m], if ov(Viyg—1)4i) = Lm—1)+i5
we include V;,,;_1)4; to S; (and do not include otherwise). If S; is not
empty, we select the first element in S; as Xy, else we sample a fresh
independent sample X| ~ 1, and let X; = X]. It is easy to verify that the
constructed process is distributed w.r.t »T. Note that the main difference
with the proof of Proposition 8.3 is that we used the random variables
I'™T on the selection of S; instead of the Bernoulli(ove (Vi (1—1)+4))
random variables (it is easy to check these two construction results in
the same distribution of S).

We now denote Ry = {I,(t—1)+1," " > Imt}, where R; is independent
of {Vm(t71)+1a -+« , Vint}. The above coupling process can be expressed
as Xy = f(Re, X{, {Vit—1)+1," "+ » Vine}), where f is a deterministic
function, such that w.p. > 1 — Te ™ over RT, X'T yvmT

vt € [T]a f(Rt7 X£7 {Vm(tfl)Jrlv T th}) € {Vm(tfl)Jrlv Tt th}

Let f be the truncated function of f such that if Vi € [m), oVt (Vin(t—1)+i) <
Lt—1)+i we set

f(Ry, WVog=n+1 Vit }) = Ving—1)41

and set f(Ry, Win=1)+1> > Vine}) = F(Re; {Ving=1)4+1, -+ > Ve }) oth-

erwise. We write

Xt = f(Rtv {Vm(t—l)—i—b T 7th})-

It is easy to see that w.p. > 1 — Te™ ™7 over the joint distribution
(XT, XT) that Vt € [T], X; = X;. We now observe that conditioning on
RT XT isan adversary m-selection process (since I mT
V™ and X7 is independent of X'7"). Therefore, we have by conditioning
on RT that

is independent of

Pr[XTeA}zE[Pr[XTemRTH21—5.
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Using a union bound we have
Pr[XTEA] >1—-p—Te ™,

Taking m = K and the assumption that K > w, one finishes the
proof. O

Proof of Theorem 8.13. Let X be an adversary K-selection process
with reference measure p over [0,1]. We assume that for any z €
[0,1], u({z}) = 0. This assumption can be eliminated with a more
tedious argument. However, we make the assumption here for clarity of
presentation.

We consider the following random partitions of interval [0, 1]. Initially,
the partition Zy consists of only the interval [0, 1]. At each time step ¢,
we denote Z; 1 to be the current partition. Let J; € Z;_1 be the interval
for which X; € J¢, we split J; into two parts with values < X, and > X;
respectively (if X, is the end point of J;, we do not split and remain on
the same J;). We then replace J; with the newly split intervals in Z;_; to
form the partition Z;. Note that one may view this partitioning process
as expanding a binary tree with each node labeled by the intervals in
7Z; and expanding a leaf when the corresponding interval is split into
two parts. Such a tree can be viewed as the (compressed) realization
tree in Theorem 7.11 if we view the Z; as subsets of H. Our goal is to
bound the mazimum depth of the tree.

For any time step t, we denote J; = [a¢, by] to be the interval for
which X; € J; and

max{pu([at, X)), p([Xe, b)) }
([at, be])

to be the splitting ratio of J;. We claim that for any o > 0,

A =

Pr [)\t >1—af Xt—l} < 2aK. (8.8)

To see this, we denote Z; 1 = {J1,--- , J™} to be the partition at time
t before receiving X;, where J; € Z; 1 and n; < t. For any interval
Jt = la;, b € T;_1, we define the a-margin of J* w.r.t. u to be the



152 Online Leaning under General Unknown Processes

intervals [a;, ¢;] and [d;, b;] such that:

ci = sup{z € [a;, bi] : p([ai, z]) < ap([as, bi])}
d; = inf{x € [a;,b;] : p([z,bi]) < aula;,b;)}.

Let V{,---, VL be the i.i.d. samples of u that is used to generate X,
and By(«) be the event that there exists some V}! and J¢ € Z,_; such
that V) is in the a-margin of interval J i, Note that for any given Vi,
the probability that V}! is in the a-margin of some interval in Z,_; is
upper bounded by 2a. We have by independence of kas that

Pr[Bi(a)] <1— (1 —2a)% < 2aK.

By definition of adversary K-selection, we have the conditional event
{\ > 1—a| X"} implying that the event B;(c) happens, i.e., the
Equation (8.8) follows.

Let I; = 1{\; > 1—a}. Then E[[; | I""!] < 2aK and I} = I, - E[I; |
I'=1] form martingale differences. Using Azuma’s inequality [9, Lemma
A7) for all a >0

T
N>zl <@/ (89)

t=1

T
Pr [Z[t >2aKT + x| <Pr

t=1

Taking = > /T'log(27/3), one can make the above probability less

than 8/(2T). This implies that for any n < T and a = Z=Y-—28"/7 %(QT/B),
w.p. > 1—p/(2T), for any A, -+, A, , we have

S (1A > (n - <2aKT+ MTlog(QT/ﬁ))) o> (= Tlog@T/ﬂ))Q,

i=1 SKT
(8.10)

where the first inequality follows by the fact that I; = 1 implies 1 — \; <

a. Using a union bound on all n < T', we have w.p. > 1 — /2 that for

any n < T and Ay, -+, A, we have:
zn:(l s (n - «/Tlog(QT/B))Z s
e = 8KT ' '

We now claim that w.p. > 1— 3/2, for any interval J; either p(J;) >
% or J; is in the final partition. To see this, we note that for any
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interval J; at time step t, once p(J;) < %, the probability it will be

split at any following time step is upper bounded by (using the same
argument for bounding the event By(«))

(i () ) <

Using a union bound on all the T intervals, w.p. > 1 — 3/2, all J;s will

either satisfy p(J;) > % or that J; is in the final partition. By union
bound, w.p. > 1 — (3, this happens simultaneously with the event of
Equation (8.11). Conditioning on such a joint event, suppose now there
exists a decreasing chain Jy, 2 Jy, -+ 2 Jy,,, hence

=

n

M(Jtn) S H )\ti S e Zizl(lf/\ti).
=1

This implies that if

n > \/8KT1og(2KT?/8) + /T log(2T/ ),

then u(Jy,) < % and therefore the chain must terminate.
Combining all of the above results, we conclude w.p. > 1 — (3 that
there is no decreasing chain of length greater than

V8K T 1og(2KT2/B) + \/Tlog(2T/5) + 1

i.e., the realization tree has maximum depth upper bounded by the fol-
lowing O(y/KTlog(2KT?/3)). The bound on the stochastic sequential
covering now follows by the same argument as in Theorem 7.11.

For the reader’s convenience, we outline the argument in the fol-
lowing discussion. We construct a sequential function set G with fized
index set W of size |W| = 2[\/15KT1°g(2KT2/6ﬂ, i.e., for each w € W,
we construct a sequential function g, : X* — {0,1}. To do so, we
maintain for each node in the realization tree a subset of YW. We initially
associate W to the root. At each time step after receiving Xy, for each
node v in the realization tree, if v splits at the current step, we split the

associated subset W, C W into two disjoint subsets of equal size and
associate them to the newly split nodes, respectively. For any w € W,,
we assign the value g,(X?) = 0 if w is in the subset associated to
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the new left child and g,,(X*) = 1 otherwise. If the node v does not
split, we assign g, (X") to be the value on the agreed label (of the
subset of H associated to v, see construction of realization tree at the
beginning of the proof) on X;. The process is said to have failed, if at
some step a node v splits but the associated set |W,| < 1. Clearly, if the
process does not fail until time 7', the constructed set G sequentially
covers H on X7 Now, the key observation is that, from the discussion
above, w.p. > 1 — 8 on X7, any node is constructed after at most
V8KTIog(2KT?/B) + /Tlog(2T/B) + 1 < [/I5KTlog(2KT?/B)]
splits. Since any split will decrease the associated subset of W by ex-
actly %, we know that the process does not fail w.p. > 1 — § since

IW| = o[ V15K T 10g(2KT?/B)] Therefore, the constructed set G stochastic
sequential covers H at scale 0 and confidence [ by Definition 7.1. [

8.4 Bibliographical Notes

The concept of the smoothed adversary was first introduced by [25] and
later developed by [27], [28], [75]. Notably, the key technical ingredi-
ent—the coupling argument—was introduced by [27]. However, all of
these works assumed that the reference measure of the smoothed adver-
sary’s samples must be known in advance. The treatment of unknown
reference measures, and the results developed in this chapter, are based
on [79]. We also refer to [77] for recent developments on minimax regret
under the unknown distribution setting.
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Constructive Algorithms for Minimax Regret

We have demonstrated in Chapters 7 and 8 general approaches for
deriving tight minimax regret for the hybrid online setting via the
concept of stochastic sequential covering. However, a major limitation
of this approach is that the covering size can be exponentially large,
rendering it computationally intractable.

This chapter introduces algorithmic primitives that address this gap
through a reduction to the Empirical Risk Minimization (ERM) oracle,
while still achieving sublinear regret.

9.1 Prelimilaries

We consider a slightly different formulation of the expected worst-case
regret that is more suitable for our algorithmic treatment. Let X be
the instance (feature) space, and let H C [0,1]* be a function class
mapping X — [0, 1]. Recall the following hybrid online learning scenario:
Nature selects an (unknown) distribution u over X" at the start of the
game. At each time step ¢, Nature independently samples x; ~ u and
then adversarially selects y; € [0, 1], but only reveals x; to the learner.
A predictor then (randomly) generates ¢; € [0,1] based on the past
inputs and outcomes, i.e., x' = {x1,...,x;} and y' ' = {y1,...,y1}.

155
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Nature then reveals y;, and the predictor incurs a loss ¢(§,y;) for a
predefined loss function ¢ : [0,1]> — R*. We assume that the loss ¢
is convex in its first argument and L-Lipschitz in both arguments; for
example, the absolute loss £(3,y) = |§ — y| satisfies these properties.

A prediction rule is a function ® that takes inputs from (X' x [0, 1])* x
X and outputs a distribution over [0,1]. For any prediction rule ® and
function class H, we define the hybrid minimax regret ! as

Tr(H,®) = sup Ex, sup Eg ---Ex, sup Eg,
y1€[0,1] yr€[0,1]

T T
[Z Ut Yt —gg?f{Zf(h(xt),yt)] , (91)
=1

where x; ~ p and §; ~ ®(xt,y' 1) for all t € [T].

Let (x1,%1),-- -, (xm,ym) € Xx[0,1],C e RT, " € {—1,+1}", and
X" € X". The mized-ERM oracle is the task of solving the following
optimization problem:

inf L(h(x; +C) €ih(x;

hen {Z i):Yi) ]21 31X }

This problem can typically be solved efficiently using gradient-based

methods, even for complex function classes H (such as neural networks).
We say a predictor ® is oracle-efficient if the running time of

=1) is polynomial with respect to ¢ by accessing

computing §; ~ ®(x',y
a mixe-ERM oracle (with each oracle call treated as unit time) for any
xt y'=1. Our goal is to design an oracle-efficient prediction rule ® that

minimizes the hybrid minimax regret 7r(H, ®) defined in (9.1).

9.2 Oracle-Efficient Hybrid Minimax Regrets

We first recall the following standard notion of Rademacher complexity:

Definition 9.1. Let H C [0,1]* be a function class and T € N*. The
Rademacher complexity of H at horizon T is defined to be

T
Radp(H) = sup E. |sup Z eth(x¢) |,
xTexT hEHt 1

!This concept is always upper bounded by the expected worst-case regret in (7.1).
However, we conjecture that the two notions are, in fact, equivalent.



9.2. Oracle-Efficient Hybrid Minimax Regrets 157

where ¢ is i.i.d. sampled from the uniform distribution over {+1}.
The main result of this chapter is stated as follows:

Theorem 9.1. Let H C [0,1]¥ be a class with Radr(H) < O(T1?) for
some q € [%, 1], and let ¢ be a L-Lipschitz loss that is convex in its first
argument. Then there exists an oracle-efficient prediction rule ® with
at most O(L\/TlogT) calls to the ERM oracle per round, such that

ir(H,®) <O <L log(LT) - Tf‘z"q) .

In particular, for a binary-valued class with finite VC-dimension, we

have
Fr(H, ®) < O(L\/VC(H) log(LT) - T1),

and for a real-valued class H with an a-fat shattering dimension of
order a~? for p > 0 [71], we have

p+1

Fr(H, ®) < OLT™> 55t

9.2.1 Efficient Predictor with Side-Information

To establish Theorem 9.1, we first consider a hypothetical scenario where
we assume the predictor has access to some side-information x° 4
sampled ¢.i.d. from the same distribution w. It is crucial to note that
this information is known to the adversarial as well, i.e., the adversary’s
strategy could also depend on x° 41, which turns out to be the main
obstacle in our analysis.

Formally, we consider the following learning game proceeds over a
horizon of length M:

1. At the start of the game, Nature selects an unknown distribution
p over X, samples an i.i.d. sample x° 41 of size N from p and
reveals x° Ny toa predictor;

2. At each time step j € [M], Nature samples x; ~ p and selects
adversarially y; € [0,1] (depends on XJ_NJrl and ¢§'~1) but reveals
only x;;



158 Constructive Algorithms for Minimax Regret

3. The predictor then (randomly) generates §; € [0,1] based on
x? niq and y/ 7L

4. Nature reveals y; and the predictor incurs loss (9}, y;), for some
predefined convex and L-Lipschitz loss.

Predictor via surrogate relaxation. Let iy be the empirical distri-
bution Ay = + SN x_n.; based on x° \_,, where dx is the Dirac
measure on X. For any time step j € [M] and horizon M satisfying
M < N/2, we construct the following randomized prediction rule:

1. Sample (internally) the dummy samples Xji1,--- , Xy from iy
without replacement ? and €41, ,€r t.1.d. from the uniform
distribution over {—1,+1};

2. Make prediction

M
g; = argmin sup ¢ 4(9,y)+ sup |2L Z eh(X;)
y€(0,1] y€(0,1] heH i=j+1
j—1
—U(h(x}),y) = Y €(h(xi),v:)
i=1

(9.2)

Note that the dummy samples are generated from iy instead of u.
Crucially, our sampling is performed without replacement (not i.i.d.),
which is essential for our following analysis (Lemma 9.6). More generally,
one may also replace the estimation fiy with other estimation rules
instead of the empirical distribution we used here. This could provide
tighter bounds if the distribution p is well-structured.

The following lemma shows that the predictor §; can be computed
efficiently by accessing to a mixed-ERM oracle.

. ~ 1
Lemma 9.2. The predictor §; can be computed upto error + VAT by

making at most O(L+v M log M) mixed-ERM oracle calls. Moreover, for

2For technical reasons, we assume here that i;vil is sampled from jin without re-
placement. Equivalently, 5(%_1 is sampled uniformly from all (permuted) subseqeunces
of X(lNH of length M — j.
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binary valued class H with y € {0,1} and absolute loss, we need only 2
(regular) ERM orcale calls to compute §; exactly.

Proof. Clearly, a naive approach for discretizing both ¢ and y with scale

ﬁ yields an algorithm with L2M oracle calls. The O(Lv/M log M)

bound follows from [28, Thm 7] leveraging the convexity on g. The
(1)

second part follows from the relation eh(X) = |h(%) — “52| — 35 for

e € {+1,—1} and the second assertion of [28, Thm 7]. O

Analysis of the regret. Denote by ® the prediction rule derived from
(9.2). We consider the following analogous hybrid minimax regret with
the additional side-information:

Fﬁ\i/}{eN(’H, ®) = sup ]Ex(lNHExl supEy, - Ex,, supEy,,
m Y1 YM

M M (9.3)
Z U95,5) — jnf, Z E(h(x5),95) |

j=1 j=1
where the randomness of §;s is over the X’s and €’s as in (9.2), while
x;s are sampled i.i.d. from p.

To proceed, we first introduce the following key concept. Let now
(x1,91), -+, (X0, ynr) € X x [0, 1] be any realization of the feature-label
pairs. We write L;-L = Y7, £(h(x;),y;) to simplify our discussion. The
surrogate relaxation is defined as 3

Rj = E,},E

M
sup2L Y eh(%;) — L | (9.4)
her  i=jt1

where X;s and ¢;s are generated the same way as in (9.2). We also define
the following variation that replaces the single X;; with a sample
X~ [

M
Rj = Ex~pBExe [sup 2Lejiah(x) + 2L Y eh(X) — LI . (9.5)
he# i=j+2

3Throughout the paper, we use the convention Ex . = E’"‘]'Vi e to simplify
J+1775
notation.
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Note that the main technique for proving the relaxation based regret
bounds, such as [36], is through the concept of admissibility, which
essentially asserts that

Ex; sup Eex [(85,y5) + Rs] < Rj1.

However, a major technical step for establishing such an result is based
on the so-called randomness matching argument by leveraging the fact
that the dummy samples used to define the relaxation are the same as
the actual feature generating process. This, unfortunately, is not true in
our case since the empirical distribution fix can deviate arbitrarily from
u under total variation, regardless of how large the sample size N is.
We instead establish the following approz-admissibility of our surrogate
relaxation, with the proof deferred to Section 9.2.4.

Lemma 9.3 (Approx-Admissibility). Let §; be as in (9.2), then for all
J € [M] we have:

Exy sup Bex [0(9, ;) + 5] < Rj-1. (9.6)
J

We are now ready to state our first main technical lemma of this
section, which follows from Lemma 9.3 by a "backward tracing" argu-
ment.

Lemma 9.4 (Regret Bound via Approx-Admissibility). Let ® be the
predictor as in (9.2). Then for any class # C [0, 1] with a convex and
L-Lipschitz loss ¢, we have

M—-1
PV (@) <Epo  |Ro+ Y Ewsup(R;—Ry)| . (97)
i=1 v

where x™; 41 are sampled i.i.d. from p and Rj, R; are defined as in
(9.4) and (9.5).

Proof. Denote Q; = Exo N+1EX1 supy, Eg, - - Ex; sup, Eg, for notation
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convenience. We have

~5|de (H Q))
© g -
Z y]7yj +RM
" [ar—1
= QMfl Z g(@jvyj) +EXM Sup]E?QM [E(ﬁM,Z/M) +RM]
_j:l Ym
© = _
< Qar—1 (J5,v5) + Ry
_‘j:1

j=1

@ M-

< Quot | D7 HG5u5) + Ruoa | + B, B sup (Ray1 = Rasoa)
i=1 i

(e) B M—-1

< Ex_N+1[Ro] + Exo . Exi S;l]p(R — Ry),

where (a) follows by definition of Ry; (b) follows by extracting the
last layer of Qar; (c¢) follows by Lemma 9.3 and noticing that ¢; has
the same randomness as Rj; (d) follows by the the facts that sup(A +
B) < sup A + sup B, supE < Esup, the linearity of expectation and
Ry—1 — Ry—q is independent of g; for all j < M —1; (e) follows by
repeating the same arguments for another M — 1 steps. This completes
the proof. O

Remark 9.1. Note that the decomposition presented in Lemma 9.4 holds
whenever the approx-admissibility condition of Lemma 9.3 is satisfied.
We believe this could be applicable to a broader set of problems and is
of independent interest.

Bounding the relaxations. By Lemma 9.4, we know that the regret
~5'de v (H, q)) can be upper bounded by Ry and the discrepancies between
Rj ‘and R;. Clearly, by the definition of R;, we have Ry < 2LRad s (H),
where Rady;(#) is the Rademacher complexity of H as in Definition 9.1.
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To bound the discrepancies, for any j € (M —1], x/, %M1 Xjio € x*, M €41 €
{£1}* and v’ € [0,1)7, we define the following function:

j+2’€%rlvy heH L
i=j+2

M
Fxi M i (x) = sup {2Lej+1h(x) +2L Z eh(x;) — L;L} .
(9.8)
The following fact is a consequence of our definitions.
Lemma 9.5. We have R; = Ex.|fy (%;41)] and R =

M
i€y
Ex~uEx |:ij7)~(]_\{r2751_\3[r17yj (x)} .

Let z; = (xJ,x%Q, %1) We now observe the following key prop-
erties of the functions f, . (x), which demonstrates that f, s (x) has
sensitivity upper bounded by 4L and is Lipschitz on 1.

Proposition 9.1. For any z; and g/, we have supy x| f, i (%)= f, s (x)| <
4L. Moreover, for all z;, x and y/,y"” € [0,1)/, we have | fa; 9 (%) —
Jasyi (R < GLIY =y loo
Proof. Denote
M
h)=2L Y €h(%)—
i=j+2
Let h = argmaxpey F(h) (find an approximation if necessary). We
claim that for any x € X,

F(h) —2L < sup {2¢j41Lh(x) + F(h)} < F(h) + 2L.

This will complete the proof of the first part. To see the upper bound,
we have

sup {2¢j41Lh(x) + F(h)} < sup{2¢;11Lh(x)}+sup F(h) < 2L+ F(h),
heH h h

since h(x) € [0,1]. For the lower bound, we have

sup{2¢;.1Lh(x) + F(h)} > 2¢j41 Lh(x) + F(h) > F(h) — 2L,
heH

since sup do not increase by replacing h with any specific h and B(X) €

[0,1].
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To prove the second part, for any given h € H, we denote
' M
gn(y’) = 2Lej1h(x) 4+ 2L Z eh(x;) — L?.
i=j+2

Note that, y/ only appears in the L;L term. By definition of L;‘ and
L-Lipschitz property of the loss ¢, we have

VheH, |gn(’) — gn(y?)| < FL||Y — 7|

Let h = argmaxy, g, (y7), we have
sup gn () —supgn(y”) < 94(v") —9,(v”) < JLIlY — 4" |l
Let h/ = argmaxy, gn(y7), we have
sup gi(y”) = supgn(y”) = 9y (v") = 93 (") = —JLIly’ = 4" ll.
The proposition follows by noticing that f, s (x) = supy, gn (). O

Note that Proposition 9.1 and Lemma 9.5 immediately imply that
R;— Rj < 4L||p— jin||Tv *. Unfortunately, we are unable to bound the
total variation distance ||u — fin||Tv due to the lack of any structure
we impose on p. We instead establish the following key technical result,
which bounds the discrepancies via a Rademacher sum of the functions
fzj7yj. This result constitutes the main technical ingredient in our next
analysis.

Lemma 9.6. Forall j € [M — 1], M < N/2and B=N - M +j+1,
we find

Exo . Exisup(ltj — Rj) <

yj
1 B
sSup Ee’B Sup — Z 6;(.fzj-7yJ' (X;) - ij,yj (X—N+i)> )
“NAB x/B g, yJ i=1
—N+1 X 7%
—N+B /B

where x_ 71", X7, z; run over all possible values and ¢'B is distributed
uniformly over {£1}5.

1Using the fact that Exe, [£(x)] — Exms[£(3)] < supy o [£() = ()| [l =]l rv-
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Sketch of Proof. We highlight only the main idea here and refer to Sec-
tion 9.2.5 for the complete proof. By Lemma 9.5, we can upper bound the
discrepancies by ]Ex(lN+1]EZj Sup,; [EXN#[fzj,yj (x)] — Ex, 4 [fzj’yj (%j+1)])s
where z; = (x/, 5(%_2, E%_l). Note that 5(%1 is sampled uniformly from
x" n41 without replacement as in (9.2). Therefore, the randomness of
5{%1 can be described as follows: we first sample 5(%2 from x% .4
and then sample X1 uniformly from the remaining samples in x° y 1
Now, the key observation is that, by symmetries of x° N41 (which are
i.i.d.), we can fix ij]\iQ being the last M — j — 1 samples in X9N+1.
Therefore, we have Ex; ., [f,, i (Xj1+1)] = ivh, fa; 43 (X=N+i), where
B = N — M + j+ 1. Since z; is decoupled from x:%if by our construc-
tion, we obtain the upper bound Eg;E_-n+5 sup,; [Expu[f,; 4 (%)] —
—N+1 7

x Y5, 2,y (X=n+:)]. The lemma then follows by symmetrization with
Exwu[fzj,yj (x)] (see Section 9.2.5). 0

For any j € [M —1] and z; as above, we define the following function
class °:

C fo i () = f (%) 197 € 0,17, (x,x) € X2,

(9.9)

Lemma 9.6 essentially states that the discrepancy between R; and Rj

is upper bounded by the Rademacher complexity of the class G5, as
EXQN+1EX1 Sup,; (Rj — Rj) < Supy, %Radg(gzj).

The following lemma provides a useful bound on such Rademacher

ng- = {gzj,yj (X’ X/)

complexities.

Lemma 9.7. Let G, be asin (9.9), M < N/2and B=N - M +j + 1.
Then

72 - s )
Sup%RadB(gzj) <0 ( JLIOgBULm) <0 (\/2JL log(JLN/2)) ‘

N
(9.10)

Proof. Let C C [0,1) be a covering of [0,1)9 with norm L, radius
ﬂ%' We have |C| < (jLB)’. By the second part of Proposition 9.1,

5Note that the "complexity" of G, arises from the v €[0,1).
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we know that the class g’ def {gz] ' y/ € C} forms a uniform L,
coverlng of G,; with radius 2 5. Therefore, —RadB(Qz]) < BRadB(g’ )
<£. The first inequality then follows by a simple application of Massart’s
lemma [11, Lemma 26.8] over G, , since |G, | < |C| < (jLB)’ and
SUP (x x/)ex2{ Jz;,y7 (X, X "} <4L for all Y2;.y5 € Gz, due to the first part
of Proposition 9.1. The second inequality is implied by that B > N/2
and the fact that the function % is monotone decreasing. O

Putting everything together, we arrive at:

Theorem 9.8. Let ® be the predictor as in (9.2) and M < N/2. Then for
any class H C [0, 1] with a convex and L-Lipschitz loss £, the predictor
® can be computed efficiently with access to at most O(L+v/M log M)
mixed-ERM oracle calls per round such that

i 6.8 < 2Rt () + VI £0 ( M3L2 10]5\;7(MLN)) (9.11)

Proof. The regret bound follows directly from Lemma 9.2, Lemma 9.4
and Lemma 9.6. We then invoke Lemma 9.7 to bound the discrepancies
by noticing that 7 < M. O

Remark 9.2. Note that Theorem 9.8 shows that if N > M?log M
then the regret with side-information is reduced to the Rademacher
complexities of H, and thus matches the case when the distribution
is known in advance. However, in reality such side-information is not
available for the unknown distribution case, which can only be obtained
from prior samples.

9.2.2 Proof of Theorem 9.1 of the Orcale Efficient Predictor

We are now equipped with all the technical tools to prove Theorem 9.1,
with the only missing ingredient of constructing the side-information.
For this purpose, we employ an epoch-based approach, resembling those
used in Chapter 8.3.1, but in a completely different context. We parti-
tion the time horizon into epochs, with epoch n of length M (n). Let
S(n) = 77! M(i) be the total time steps after n — 1 epochs. We will
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use the features observed upto time S(n) as the side-information intro-
duces in Section 9.2.1 (denoted there as x%; +1) and apply the predictor
constructed in (9.2) to make the prediction during the nth epoch.

N :=S(n) M(n)

| | | |
[ I I I

Epoch 1 Epoch n

To this end, our main technical part is to optimize the epoch length
M(n) that balances the trade-off in (9.11) and achieving the minimal
total regret. Let @ be the predictor derived from (9.2), which we write
as ®(x° 1 x7,y71) for the side-information x° 41, features xJ and
labels 37 ~! observed thus far. We define the following epoch predictor
W: for any epoch n and time step j during such epoch, we set

n)4q n)4+j— n) Sn)+j S(n)+ji—
(xS SO = @ (x50 S S (91)

Let S~Y(T) be the largest number n such that S(n) < T. The following
lemma upper bounds the hybrid minimax regret of ¥ using the regrets
with side information (9.3) incurred by ®. Note that this is not immedi-
ately obvious since we have reused the side-information among different
epochs.

Lemma 9.9. For any H and convex L-Lipschitz loss ¢, we have

-
FT(/Hvlll) < Z f?\i/?(en),S(n)(H’q))'

1(T)
n=1

Proof. Define the operator Qi = Ex, sup,, Eg, - - Ex; sup,, Eg;, where
Gr ~ W(x', y'~1) for all t € [T]. We have (truncate the last S(n + 1)
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above T if necessary):

S~—HT) S(n+1)
Fr(H, V) = Q] sup [ > 5(1?;‘7%) — £(h(x;), yg)]
he
n=1j=S(n)+
(a) ST S(n+1)
< QU sup | > dy,y5) — L(h(x5), 1)
n=1 heH j=S(n)+1

()S—I(T) P (n+1)
= Eson @ Sup | D £ w5) — £(h(x;),95)

n=1 heM | j=S(n)+1
©° &
= —~ F?\?Fn),é‘(n) (Ha (I))v

where (a) follows by sup(A + B) < sup A + sup B and linearity of
expectation; (b) follows since §; depends only on x’ and yg(n) for
j € (S(n),S(n+1)]; (c) follows by definition. O

Proof of Theorem 9.1. Assume Radp(H) < O(T?) for some ¢ € [3,1].
By Theorem 9.8 and M (n), S(n) < T we have

3 2 2
i) 50 (s @) < O (LM Min)Llog LT )>

S(n)

Let M(n) = n® for some o > 0 to be determined later. We have S(n)
Sti® = ©(n°t!) by integration approximation, and STY(T)
O(Tl/(o‘“)). This implies that

~si (6% Oé—l
e sy (Hy @) < O(Ln® + Ly /log(LT?)n"" ).

By Lemma 9.9 and integration approximation again, we conclude
a ati
Fr(H,T) <O (LTaq++11 + L,/log(LT2)Ta+?> . (9.13)

oo : +3 e
Optimizing arg mlna>0 max{ O(;q:ll, zﬁ} we find (9.13) is minimized

Plugging back to (9.13), we find 7p(H, V) <

IA

when taking a = 2(1 E

@) (L«/log(LT)T3—2fJ> . This completes the proof of the first part. The
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second and third parts follow by the facts that Radr(H) < O(/VC(H)T)

for finite-VC class [44, Example 5.24], and Rady(#H) < O(Tmax{%’%l})
for classes with a-fat shattering dimension of order a7 [28]. This
completes the proof and the big-O notations and M(n) < S(n)/2 are
justified by noting that > 1 since ¢ > % O

9.2.3 Tighter Bounds for Special Classes

As demonstrated in Section 9.2.1, the main technical obstacle for ana-
lyzing the regret is to upper bound the discrepancies between Rj and
R; as in Lemma 9.4. It was shown in Lemma 9.6 that such discrepancies
can be upper bounded by the Rademacher complexity of the class G,
in (9.9). We demonstrate in this section how to leverage the structural
information of G,; leading to tighter regret bounds for certain special
classes when compared to the general bounds from Theorem 9.1.

Binary valued classes. Let % C {0,1}* be a binary valued class
and £(y,y) = | — y|. For any given z; (assume, w.lo.g., €41 = 1)
and y/ € {0,1}7, the function fa; 45 can be expressed as f,. ,i(x) =
sup,{2h(x) + F(h)} (see definition in (9.8)), where F'(h) is a discrete
valued function taking values in [—2M, 2M]. Define

HO = {h € H:F(h) :hs/u%F(h’)}

and

le{hEH:F(h): supF(h')—l}.
h'eH

Let h0(x) = supyeqgo {2(x)}, R (X) = supyeqy1 {h(x)} and h = arg maxpey F(h).
The following structural characterization of f, i holds:
Lemma 9.10. For any x € X', we have:
F(h) 42, if O(x) = 1
oy (¥) = S F(h) +1, if hO(x) =0 and hl(x) =1 . (9.14)
F(h), else
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Proof. Note that f,. ,;(x) = sup,{2h(x) + F'(h)}. If hY(x) = 1, then
3h € HO such that h(x) = 1 and F(h) = F(h), thus f,_,;(x) > 2+ F(h).
Clearly, we also have f, ,;(x) < 2sup, h(x) + supy, F'(h) <2+ F(h),
the first case follows. If h°(x) = 0 and h'(x) = 1, then there exists
h € H' such that h(x) = 1 and F(h) = F(h) — 1, thus f, ,,(x) >
F(h)—1+2 = F(h)+1. On the other-hand, since h°(x) = 0, we have for
all h € H°, 2h(x) 4+ F(h) = F(h). For any other h & H° U ', we have
2h(x)+F(h) < 2+ F(h)—2 = F(h). Therefore, f, ,;(x) < F(h)+1, this
completes the second case. Finally, if both h%(x) = h!(x) = 0, we have
for any h € H°, 2h(x) + F(h) = F(h), i.e., fa; 9 (%) 2 F(h). Moreover,
for any h & HO, it is easy to verify that 2h(x) + F(h) < F(h). O

Theorem 9.11. Let H C {0,1}¥, FY = {fi(x) = suppep {h(x)} :
H C HY, F' = {fu(x) = infrep {h(x)} : H' C H} be two classes of
functions and /¢ be the absolute loss. Then there exists an oracle-efficient
predictor ® satisfying 7p(H, ®) < O(\/max{VC(]:“),VC(]:i)}T).

Proof. Assume, w.o.l.g., €;41 = 1. The functions hO, h' as in Fact 9.10

2N c XQN

are within 7. For any x and /1 uniform over x2V, there exists
def

a y-cover Cy of F! under distance d;(f1, f2) = Prxp[fi(x) # fa(x)]
such that |C,| < O(=vemy Vc(fu 5) [76]. By Fact 9.10, there exists a function

T : (F4)?% — {0, 1,2}X such that for any f,, i, there exist RO Bl € Fu
such that f,, . (x) = T(h(x), h(x)) + Cqj i, Where ¢ 5 = F(h) as in
Fact 9.10. Therefore, the function class ' % {T(hORY) : RO Rt € C,}
forms a 27y-cover of {(f, yj( X) = Cgj i) y/ € ]0,1)7} under distance

du(f1, f2) and |C'| < O(=vezy QVC(IU 5)- This implies that the function class
C" L g, x) = f(x) — f(x): f €C, (x,x) € X2} forms a 4y-cover
of

gz]- = {QZj,yj (Xlﬂx) = ij,yj (X/) - ij,yj (X) : yj € [07 1]j7 (X/,X) € XQ}

under distance dy(g1,92) = Prx x)~olg1(X', %) # g2(x’,x)] for any
distribution # uniform over a fixed pairing of x>V and |C"| < O(ﬁ)
We have by the chaining argument [44, Example 5.24] that Radn(Gz;) <
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O(y/VC(FY)N). This implies by Lemma 9.4 & 9.6 that

i M\/VC(F)
e (H, @) < O [ /VC(H)M + ———= 7| . 9.15
M,N( ) = ( ( ) \/N ) ( )
Taking M(n) = 1.5" in (9.12), we have N = S(n) = 2-1.5" — 3, which
ensures M (n) < S(n)/2+0(1) (as required for (9.15) to hold). Invoking
Lemma 9.9, we conclude

[logy 5(T)]

Fr(H,¥) < O(VC(H)+4/VC(FY) > 152 < O(/VC(F9)T),

n=1

where the last inequality follows by H C FY. This completes the proof
and the case for €;11 = —1 is symmetric with F. U

Note that for the threshold functions H = {1{z > a} : a,z € [0,1]}
we have FU = F' = H. Theorem 9.11 implies an oracle efficient O(v/T)
regret, which matches the information-theoretical lower bound and is
tighter than the covering-based O(y/TlogT) bound implied by [69].
Another example is the class of indicators of intervals with bounded
length {1{z € [a,b]} : b —a > ~,]a,b] C [0,1]}, for which we have
VC(F') =2 and VC(FY) < O(%)
Lipschitz functions. Let X = [0,1]? and H C [0,1]* be the class of
all 1-Lipschitz functions under Lo, norm. Assume 4(g,y) = |§ — y| is
the absolute loss. Let u and fiyy be the true and empirical distribu-
tions, respectively, as in Section 9.2.1. By Lemma 9.5 and assuming
that kﬁl is sampled i.i.d. from i, we have Ex]'_N+l supyj(Rj - Rj) <
Eyo 59Dy 5, By 9 ()] — Excmiy o 0 (x)]). By the same argu-
ment as Proposition 9.1 (second part) and Lipschitz property of h € H,
we have:

Fact 1. For all zj,37 and x, %/, |f,. i (%) = [y, i (x')] < 2/[x = ¥/|| oo

Theorem 9.12. Let H and ¢ be as above. Then, there e;dsts an oracle-
~ 1 d—1

efficient predictor ® such that 7 (H, ®) < O(T™*{2"T 1) and this

bound is tight upto poly-logarithmic factors.
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Proof. By Fact 1, we know that for all z;,y’ the function Ja; 0 (x)
is 2-Lipschitz. Therefore, by Kantorovich-Rubinstein duality [80] we
have SUDyj 7, (EXNM[ij7yj ()] = Ex~jiy [fzj,yj (x)]) < 2Wi(u, in), where
Wi, in) = infyerin) Eaox)ay[]1X — X'[|oc] is the Wasserstein 1-
distance with I'(u, finy) being the class of all coupling between p, fiy.
Therefore, we have E_;  sup,; (R; — Rj) <20 [Wi(p,iin)], ie.,
—N+1 ZN+1
the discrepancy is upper bounded by the convergence rate of em-
pirical distribution under Wasserstein 1-distance. Invoking [81, Thm
1] and boundedness of X, we have IEXO_NH[Wl(,u,, in)] < O(N-Y4,
Let ® be the predictor in (9.2). By Lemma 9.4 and Radp/(H) <
O(Mmax{%’%}) [44], we have
s (H) < O(M™43 57 4 MN—1/4),

The result then follows by Lemma 9.9 with M (n) = 2™ (which ensures
N = S(n) = M(n) — 1). The last part follows by that the e-metric
entropy of H is @(6%) [44]. O

Remark 9.3. Note that, if we assume certain structure on p that admits
a computationally efficient estimator fin that satisfies || — fin||lTv <

O(ﬁ) (such as for Gaussian distributions [82]), then the (optimal)

O(Rad7(H) + v/T) bound is achievable for any class H C [0, 1]%.

9.2.4 Proof of Lemma 9.3

In this section, we establish the approz-admissibility of our predictor in
(9.2). The reasoning follows closely to the arguments as in [36, Lemma
11&12] but needs careful adaption for handling the dummy samples Xs
generated from [iy. We have

Ey, sup Ec x [€(75,y;) + Ry]
Y

M
= Ey; supEc % [E(gjj, y;) + Zup 2L Z eh(x;) — L?]

Yi i=j+1
(a)

M
< EexEy, |:sup£(yj,yj) + sup 2L Z eh(x;) — U(h(x;),y5) — L;‘_ll
Yi € i=j+1
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®) M

< EexEx, |infsup£(,y;) + sup 2L Y eh(%:) — €(h(x;), ;) — LI,
Yoy her  imj

M

= EcxEBy, |infsupsup 2L Y €h(%;) — Li_y + £(9,y;) — L(h(x;), ;)
Uowi hen T

© | M

< EcxBy, |infsupsup 2L > eih(%:) — LIy + 00(3,y;) (5 — h(x;))
Y y; heH i=j+1

(&) [ M

< EcxEx, |infsup sup sup2L Z eih(x;) — L;’_l + 9,;(9 — h(x;))
Y oyi gi€l-L.LlheH 5T

M
< BesBy, |inf sup  sup2L > eh(%;) — LI+ g;(§ — h(x;))
Y gje{—L,L} heH i=jt1

where (a) follows by the definition of R; and that ; has the same
randomness as R; (i.e, the Xs and es); (b) is due to definition of §;; (c) is
due to convexity of ¢; (d) is due to L-Lipschitz property of ¢; (e) follows
by that the inner function is convex w.r.t. g; and thus the SUPy e[ L,1]

is attained on the boundary {—L, L}. We have

M
EexEx; |inf sup sup2L Z eih(X;) — L;L,l +g9; (9 — h(xj))
Y gje{—L,L}y heH imjt1

M
= EexEx; |inf sup Egina; [sup 2L Z eih(%:) — L' 1 + g;(9 — h(Xj))‘|‘|

Y djen({-L,L}) heH i1
( r M
b) . - N
S EexBx; | sup  infEg g [sup2L Y eh(Ri) — L1+ g;(5 — h(x;))
|djead-L.Ly ¥ hew T

= Ee,,z]Exj sup 12fIEgj~dj
j

M
9,0+ sup 2L > eh(x) - L —gjh(Xj)H
€

i=j+1
M
= E.xE inf | Eg;~a,[9;9] +E 2L > @h(%i) — L1 — g;h(x;)
= e, xlx SEPII’; gjwdj 95y gj"‘dj }SLZE €;in(X; i—1 g;j X;
J i=j+1

M

d
@ EexEx, [sup (ir}ng/dej [g;gj]) + By na; [sup 2L Z eih(x;) — L?,l — gjh(xj)‘H
dj Y J ’ heH

g i=j+1

M
= BexEx; [Sclllp Bgjnd; [“;f Egrna; l959] + sup 2L > eih(x) — L - gjh(xj)H
3 S L

i=j4+1
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heH

M
= Ee xEx; [suquJNd [sup 2L Z eh(X;) — L?,l +ir$fIEg;Ndj [gzﬁ] gjh(xj)‘|‘|
i=j+1

r M
(e)
< Ee,ﬁExj S;llp Engdj lsug 2L Z Elh(il) - L?*l + IE‘:g]'.wdj [g;h(xj)] - gjh(Xj)‘|‘|
L < i=j+1

M
el [SEE 2L > eh(%i) — Lj—y + (g} —gj)h(Xj)H
i=j+1

M
= Ee,zEx; suquJ gj~d E, [squL Z eh(X;) — LJ 1+ €5(gj — g5)h(x )]]
i=j+1

M
< EexBEx, supEg7~d E, [sup 2L Z €h(X:) — L?_1+2€jgjh(xj')‘|‘|
heH

i=j+1

@Ee,gExj [ 3 [:16171;;2L Z eih(X;) — Lj_ 1+2e]-Lh(xj)H

i=j+1
=Rj_1,

where (a) follows by supy_ (1 1} = supg ea(—r.1}) Eg;~d; Where A({—L, L})
is the set of all probability distributions over {—L, L}; (b) follows by
the minimax theorem and noticing that the inner expectation is bi-
linear w.r.t. § and d;; (c) follows by the fact that g;¢ is independent
of supy; (d) follows by that the sup, term is independent of § and
introducing an i.i.d. copy g; of g;; (e) follows by the fact that re-
placing § with h(x;) does not decrease the inf term; (f) is due to
supE < Esup; (g) is due to symmetries of g;, g; and €; is uniform over
{—1,1}; (h) follows by sup(A+B+C) < sup(A/2+B)+sup(4/2+C) =
(sup(A + 2B) + sup(A + 2C))/2, the linearity of expectation and sym-
metries of B,C; (i) follows by that the inner expectation takes the
same value for all g; € {—L, L} and therefore the supy; Eg,~q; can be
eliminated. This completes the proof.

9.2.5 Proof of Lemma 9.6

We have

Exo o Exi S;]P(Rj - Rj)
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(a) -
=L X0 +1Exj S;l]p Ei%ﬂyﬁM ExN/l[ij,yj (X) - ij,yj (Xj-l-l)]

J+1

<Eeo o Exigar v supEg; x[fy 40 (%) = fa; 40 (Xj11)]
y]

X_N+1 G+20€541
= IEx(l]\,_'_lEZj S;]p Ef{j-‘-hx[fzj-,yj (X) - ij,yj (ij—i-l)]

=By, Bay 0P Byl oy (0]~ B oy (1))

©
- EZ]E N+B SUP [Exwu[fzj,yﬁ Zfz],yﬂ X— N+Z)‘|
(d)
= IEZ].IEX_%JrB sup[ ZEX ~3 fzwy;( x;)] — fz]’ya( N+i)‘|
—N+1 i
= EZ]E _NIIB sup EX/BNHQ@B [ Z fzj y] fz7 yd (X N+z)]
yd
< Eszx7N+BEX'B sup [ Z fzyvyj fZvaJ (X N+Z)‘|
—N+41 yi
(e)
&/ EZJEX7N+BEXIBE /B sup [ Z fz],yﬂ fZJ7yJ( —N+i))]
1 & )
< sup Ee’B sup [B Z (fzj,yf( ) fzj,yﬁ (X N-H))}
“N+B 1B 4. y’ i=1
—N+1> el

where (a) follows by Lemma 9.5 (in Section 9.2.1); (b) follows by defini-
tion of z;; (c) follows by Lemma 9.13 below and taking B = N —M+j+1;
(d) follows by introducing B fresh 4.i.d. samples x'® ~ u®8; (e) follows
by symmetries of x'? and X:%i? (which are independent of z;) and
introducing the i.i.d. random variables €'® uniform over {—1,1}%;
Lemma 9.13. Let B=N — M + j + 1, then

Exo_N_HEZ]' S;P[Exwu[fz]-yj (X)] - Eiﬂ-l [ij,yj (ij+1)]]

= By, Ex:%i? S;la-p Ex~p [fzj i (X Z fa; i (X=N+i)
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Proof. Note that z; = (x/ ,5(%2,6%1), where 5(%1 are sampled uni-
formly from x° N1 Wwithout replacement, and x7, 6%_1 are independent
of x% 1. Therefore, we have
EXENJFIEZJ' SU;p[EXNM [fzj I (X)] - Ef{jJrl [fzj,yj (ijJrl)H
y
=By Bxo | Bear sup[Bxy[fr 40 (0] = Bxy i [z, 49 (Rj1)]]

+1 —N-+
y]

*)
- Exj75?ilEng+1El S;l]p ]EX’V/‘[fZvaJ Z fzj:y] N+i)

ze[N]\I
where the key step (x) follows by noticing that the randomness of 5(%2
is equivalent to selecting a random index set I C [N] uniformly with
size |I| = M — j — 1 and the index of X;j41 (in x° ) is then uniform
over [N]\I 9, where the size of [N]\I is B= N — M + j + 1; Therefore,

Ex]+1[fzj,yﬂ(xj+1 B Z fzjny X— N-‘,—z)
€[N\

Note that x‘lN_H is an i.i.d. sample, by symmetries, we can fix

I={B+1,---,N} (ie., we take 5(%2 being x” \, 1) and therefore
5{%2 can be decoupled from x:%if , leading to
B e By Er sup [Exwu [0 (% B D Sy (X N-i-z)]
Y 1€[NI\I
= o), Bl B 1 S0P [Ew[fw Z Fay (- N+z>]
= ]EZJ'EX:%I? S;,p [EXNM[fZJ,yJ Z fay49 (% N+i)] :
This completes the proof of this lemma. O

9.3 Oblivious Adversaries

Finally, we provide the regret analysis for online learning against an
oblivious adversary. Note that, up to this point, we have assumed that

5By the definition of sampling without replacement.
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the generation of y;’s is adaptive, meaning that the selection of y; at
each time step depends on all prior information: x*, 4!, and ¢*~!. For
comparison, we now introduce a weaker notion of an adversary—mnamely,
the oblivious adversary—which selects the 1;’s based only on the current
instance x;. Interestingly, in the case of obliviously chosen labels, the
hybrid minimax regret can be substantially improved.

We follow the same online learning game as in (9.1) with the excep-
tion that the adversary fixes functions fy,---, fr : X — [0, 1] before
the game and sets the adversary labels y; = fi(x;) for each time step
t € [T]. Formally, for any expert class H and prediction rule ®, we are
interested in the following oblivious minimax regret:

~ob (7‘[ (I))

T T
= sup sup Eyr Egr Ze(gtaft(xt))_gggzé(h(xt)aft(xt)) ;
t=1 -

fi,,fr€(0,1]Y p

where xT

are sampled i.i.d. from pu and §; ~ ®(xt,y*~1) for ¢t € [T).
For the clarity of presentation, we assume that ¢(g, y) |g — y| is the
absolute loss.

We now ready to state the main result of this section:

Theorem 9.14. Let H C [0,1]* be a class of Rademacher complexity
Radr(H) = O(T9) for some g € [3,1] and ¢ be the absolute loss.
Then there exists an oracle-efficient prediction rule ® with at most
O(VTlogT) calls to the ERM oracle per round, such that

P (H,®) < O(T).
In particular, for finite-VC class H, we have 7°(H, ®) < O(/VC(H)T).
For a class H with a-fat shattering dimension O(a™P) for some p > 0,
~ 1 p—1
we have 79°(H, @) < O™z,
Proof. We will follow the same path as the regret analysis for the non-
oblivious adversaries as established in Section 9.2. We first consider the

scenario with side-information x° N1, and define for any predictor ®
the following oblivious minimax regret with side-information:

M
~ob S|de(,H (I)) sup supE XM, o QM Z g(@ja fj (Xj))
fi, fm €01 H J=
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M

_fiIEl'glj 1€(h(xj)afj(xj))] )
where x™_, are sampled i.i.d. (9.2) and R; and R; be the same

surrogate relaxations as in (9.4) and (9.5). We claim that:

M-1
~ob 5|de(/H (I)) < supSUPE 0 RO —+ Z Exj [R] — Rj] (9.16)
M 7=1

To see this, we find
M j=1

M M
~ob 5|de(,H (I)) = sup Slip]E M EQM [Z 6(2%-7 fj(xj)) — ég%zg(h(xj)’ fj(xj))]
j=1

M
N S%)supE My ]E??M [Z 0G5, fi(x5)) + Rm
f M =

S

-1

E(@j’ fj(xj)) + EXM]E?JM [g(gMa fM(XM)) + RM]

™

M X_N+1

-
I
—

=supsupE, v Egn— [

(a) M-1

< supsup B acs By D U5 15(%5)) + By, Sup]EyM [€(Gars yar) + R
f ® j=1
(M1

®)
< supsup]E M 1 E gM—1
TR

(@5, 3(%5)) + Rar—1

™

~
Il
—

S

(G, £(%x5)) + Rar—1 + Rar—1 — R

™

M N

*supsupE M-—1 ]E gM—1 [

1

J

-1

£(D5, f3(x5)) + Rv—1

= Sup sup (]E M- 1 E gM—1
1

f M

Il <

+]E M 1 (RM 1 — Ry 1))
J

£

Ro+ > Ey[R; — Ry
j=1

(¢)
< supsup E,o
M N+1

where (a) follows by that replacing fas(xas) with sup,, do not decrease
the value; (b) follows by Lemma 9.3; (¢) follows by repeating the same
argument for another M — 1 steps.
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Now, the key observation is that E_; [R; — Rj] =0 for all j €

—N+1

[M — 1] whenever N > M — 1. This follows by the same argument
as in the proof of Lemma 9.6 by noticing that the sup,; is outside
the expectation E_ s for oblivious adversaries. Moreover, this argument
holds forall B=N - M +j+1>1,ie, N > M — j (since by our
assumption N > M — 1 and j > 1). Therefore, we have

~Ob Slde(H (I)) < Ex(lN-»-l[RO] S RadM(H) S O(Mq)’

whenever N > M — 1. By the epoch approach as in Section 9.2.2 and
taking the epoch length M (n) = 2™ (which ensures S(n) > M(n) — 1)
we conclude

[log T']

FP(H, W) < > 2m < O(TY),

n=1
where W is the epoch predictor derived from ® as (9.12). The theorem
now follows by Lemma 9.2 and noticing that the computational error
only contributes O(v/T) to the regret. O

Remark 9.4. Theorem 9.14 demonstrates that the oblivious minimax
regret with unknown i.i.d. feature generation process is equivalent
to the regret achievable with known feature generation distribution
and non-oblivious adversaries [28, Thm 7], which also matches the
information-theoretical lower bound (upto poly-logarithmic factors).

9.4 Bibliographical Notes

The relaxation-based approach was first introduced by [36], providing a
generic method for constructing sequential prediction algorithms (albeit
potentially inefficient) for a wide range of online learning scenarios.
Rakhlin et al. [36] demonstrated that an oracle-efficient online learning
algorithm is feasible via the so-called random play-out approach, pro-
vided one can access a sampling oracle for future features. This includes
applications such as transductive online learning [83], [84] and settings
with known i.i.d. feature generation distributions [85]-[87]. A more so-
phisticated scenario—the smooth adversarial setting—was investigated
by [25], [27], [28], [88]. In this setting, the future sampling distribution
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is not directly accessible but can be stochastically controlled via a cou-
pling argument introduced by [27]. However, this approach still requires
access to a sampling oracle for the underlying reference measure.

The results on oracle-efficient algorithm with unknown feature dis-
tributions presented in this chapter are based on the work of [89].



10

Online Learning with Noisy Labels

This chapter studies online learning from noisy labels, where examples
arrive sequentially with adversarially chosen features and stochastically
corrupted labels. Unlike the agnostic online settings considered in earlier
chapters—where regret is evaluated on observable labels and both
features and labels may be adversarial—our focus here differs in two key
respects: (i) we assume that the noisy labels are generated by a semi-
stochastic mechanism rather than being chosen purely adversarially;
and (ii) our predictions are evaluated against the (unobservable) true
labels rather than the noisy observations.

It is instructive to start with the following example from [35]:

Example 10.1. Let £ C {0,1}? be a finite hypothesis class. Consider
the following online learning game between Nature/Adversary and
Learner over a time horizon 7T'. Nature fixes a ground truth h € H to start
the game. At each time step ¢, Nature adversarially selects feature x; €
X and reveals it to the learner. Learner makes a prediction ¢; based on
prior features x* = {x1,--- ,%;} and noisy labels #*~' = {71, , §r_1}.
Nature then selects an (unknown) noise parameter 7, € [0, 7] for some

180
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given 1 (known to learner), and generates !

g+ = Bernoulli(n;) @ vy,

where @ denotes binary addition and y, = h(x;) is the true label. It
was demonstrated by Ben-David et al. [35, Thm 15] that there exist
predictors 47 such that

T
sup [Z i # h<xt>}] — i (10.1)

heH xTexT B 1—2\/77(1—77).

Note that the risk bound in (10.1) is surprising: although the cumu-
lative noise grows linearly 1T, the risk remains independent of the time
horizon T', even when evaluated on the unseen true labels. Despite its
foundational nature, understanding this phenomenon beyond simple
Massart’s noise remains largely unexplored in the literature.

We present in this chapter a theoretical framework that system-
atically addresses this gap, offering a more principled approach to
understanding the intrinsic complexity of the problem that determines
the risk under various noise mechanisms.

10.1 Problem Formulation and Preliminaries

Let X be a set of features (or instances), ) be a set of labels, and ) be
a set of noisy observations. We assume throughout this chapter that
|Y| = N and |Y| = M for some integers N, M > 2. We denote

M
DY) = {p = (p[1],...,p[M]) € [0, 1] : Y~ p[m] = 1}

m=1

as the set of all probability distributions over ).
A noise kernel is defined as a map

K:X xY—2PO),

where 2P0 is the set of all subsets of D()), i.e., the kernel K maps

each (x,y) € X x Y to a subset of distributions K(x,y) C D().

IThis is typically referred to as Massart’s noise.
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Note that the noise kernel provides a compact way of modeling the
noisy label distribution directly without explicitly referring to the noise.
This is more convenient for our discussion, as ultimately the statistical
information is solely determined by the noisy label distributions.

Let H C V¥ be a class of hypotheses and K be a noise kernel as
defined above. Denote Q3 := K(x,y) for notational convenience. We
consider the following robust online classification protocol:

Protocol 10.1 Adversarial Online Learning with Noisy Labels

1: Initialization: Nature fixes a ground truth h € H

2: fort=1to T do

3 Nature selects instance x; € X adversarially

4: Learner predicts ; € ) based on history (x?,7'~!)

5 Adversary selects p; € QZ"EXt) and samples noisy label g ~ p;
6: end for

The goal of learner is to minimize the cumulative risk

T
Z 1{h(x¢) # 9t}
t=1

Note that the cumulative error is a random variable that depends
on all the randomness associated with the game. To remove the depen-
dency on such randomness and to assess the fundamental limits of the
prediction quality, we consider the following two measures %:
Def[nition 10.1. Let X C Y be a set of hypotheses and £ : X x Y —
2PO) be a noise kernel. We denote by @ the (possibly randomized)
strategies of the learner. The expected minimax risk is defined as:

T
(M, K) = igfzgg@%EgT Lz; {h(x¢) # ﬁt}] : (10.2)

%We assume here the selection of 7 and xT are oblivious to the learner’s
action for simplicity. This is equivalent to the adaptive case if the learner’s internal
randomness are independent among different time steps by a standard argument
from Cesa-Bianchi et al. [9, Lemma 4.1].
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where §; ~ ®(x!,7'71) and QF denotes for operator

T _
Qi =sup sup [Eg~p, - sup sup  Egp~pr-

x1€X131€Q:%Xl> XTEXZ;TGQ:?;T)

By skolemization (Lemma 2.2), we have operator identity:

@% = Sdl}lTp s;Tp Egr 5,
where 9T = {41,--- ,¢r} runs over all functions ¢; : Y"1 — X for
t € [T] and p” runs over all (joint) distributions over YT subject to the
constraints that for any ¢ € [T] and §*~! the conditional marginal j;
of p" at §j; conditioning on ! satisfies p; € szh) for x; = 1 (7t1).
This leads to our next definition of the high probability minimax risk:

Definition 10.2. Let #, K and ® be as in Definition 10.1. For any confi-
dence parameter d > 0, the high probability minimax risk at confidence
§ is defined as the minimum number B(H,K) > 0 such that there
exists a predictor ¢ satisfying:

T
sup  Pr > 1{h(x¢) # Gt} > B(H,K)| <9, (10.3)
heH YT pT t=1
where the selection of T and ! are as in the discussion above with
x; = (§*!) and the probability is over both 7 ~ p’ and §7 for
gt ~ @(Xt,gt_l).

Note that the kernel map K is generally known to the learner when
constructing the predictor ®. However, the induced kernel sets szm)
are not, since they depend on the unknown ground truth classifier
h and adversarially generated features x’. In certain cases, such as
Theorem 10.4, the kernel map K is also not required to be known.

We assume, w.l.o.g., that Qs are conver and closed sets for all
(x,y), since the adversary can select an arbitrary distribution from Qfs
at each time ¢, including randomized strategies that effectively sample
from a mixture (i.e., convex combination) of distributions in Q’y‘s.

Clearly, one must introduce some constraints on the kernel K in
order to obtain meaningful results. To do so, we introduce the following
well-separateness condition:
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Definition 10.3 (Well-Separated Kernel). Let L : D(Y) x D(Y) — R20
be a divergence, we say a kernel K is well-separated w.r.t. L at scale
~v>0,if Vx € X, Vy,y € Y with y # 1/,

def

L(Qy, Q) = L(p,q) > .

inf
peQyaeQy,

Example 10.2. Let ) and ) be the label and noisy observation sets.

We can specify for any y € ) a canonical distribution p, € D()). A
natural kernel would be to define:

Oy ={peD):|lp—pyllrv < €}
In this case, the kernel is well-separated with the gap ~ under total
variation if:

inf Dy — Dy’ TV = + 2e.
nt llpy —pyllvy 2

10.2 The Binary Label Case

We initiate our discussion with a simple case, where we assume the label
space Y = {0, 1} is binary-valued. This will provide us with an intuitive
understanding of how the stochastic nature of noisy labels impacts the
risk bounds. We state our first main result:

Theorem 10.1. Let £ C {0,1}* be any finite binary valued class, KC be
any noise kernel that is well-separated at scale 7, w.r.t. L? divergence.
Then, the expected minimax risk, defined in Definition 10.1, is upper
bounded by:

161og |H|

Tr(H,K) <
{ ) T

10.2.1 Proof of Theorem 10.1

We begin with the following simple geometry fact that is crucial for our
proof.

Lemma 10.2. Let @ C D(Y) be a convex and closed set, p be a

point outside of Q with ~ def infyeo L%(p, q). Denote by ¢* € Q the
(unique) point that attains L?(p, ¢*) = 7. Then for any ¢ € Q, we have

L%(q,p) — L*(q,q*) > L*(p,q*) = 7.
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Proof. By the hyperplane separation theorem, the hyperplane perpen-
dicular to line segment p — ¢* at ¢* separates Q and p. Therefore, the
degree 6 of angle formed by p — ¢* — ¢ is greater than 7/2. By the law
of cosines, L?(¢,p) > L*(q,q") + L*(¢*,p) = L*(¢,¢%) + - O

Our key idea of proving Theorem 10.1 is to reduce the robust
(noisy) online classification problem to a suitable conditional distribution
estimation problem, as discussed next.

Online conditional distribution estimation. Let F C D())¥ be a class
of functions mapping X to distributions in D(Y). Online Conditional
Distribution Estimation (OCDE) is a game between Nature and an
estimator that follows the following protocol: (1) at each time step ¢,
Nature selects some x; € X and reveals it to the estimator; (2) the

estimator then makes an estimation p; € D(Y), based on xt, 7~ 1; (3)

Nature then selects some j; € D())), samples §; ~ p; and reveals §; to
the estimator. The goal is to find a (deterministic) estimator ® that

minimizes the regret:

T
Regy(F,®) = sup Q" | L(pr, pr) — L(pe, f(x4)) | , (10.4)
feF t=1

where p; = ®(x¢, 7'71), QT is the operator specified in Definition 10.1 by
setting O = D(JNJ) for all x,y, and L is any divergence. We emphasize
that distributions p” are not necessarily realizable by f and are selected
completely arbitrarily. This is the key that allows us to deal with
unknown noisy label distributions.

We now establish the following key technical lemma:

Lemma 10.3. Let F be any distribution-valued finite class and L be
a Bregman divergence such that the induced loss ¢(p, ) def L(eg,p) is
a-Exp-concave. Then, there exists an estimator ®, such that
log | F
Regy(F, @) < 2871

«

Moreover, estimation p; is a convex combination of {f(x;): f € F}.
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Proof. Let ® be the EWA algorithm as in Algorithm 3.3 with input
F,n:=« and loss {(p, ) def L(eg,p). Let §7 be any realization of the
labels and e; be the standard base of RM with value 1 at position
and zeros otherwise. By a-Exp-concavity of loss £ and the regret bound
from Theorem 3.5 (view x; = 1(§'~1) and p; := ), we have:

sup ZL 6t7pt etaf(wt(Nt 1))) S b%ﬁ)

fEF T GTeYT t=1

(10.5)

where ¢ = {41,--- ,¢r} runs over all functions ¢; : Y"1 — X for
t € [T]. Note that this bound holds point-wise w.r.t. any individual
gt i

Fix any 7 and distribution p* over Y. We denote E; as the con-
ditional expectation on §; over the randomness of §° ~ p’ conditioning
on '~ and denote p; as the conditional marginal. By Proposition 2.1,

we have for all ¢ € [T'] that:

Er |L(er p1) = Llew, f (0@ ™)))] = LB p1) = Lo, S(be(G' 1)),

since E[e;] = p; for § ~ Py, Py depending only on §*~' and L is
a Bregman divergence. We now take E;r on both sides of (10.5). By
sup E < Esup and the law of total probability (i.e., E;r X1+ +Xr] =
Egr[E1[X1] + - - - 4+ Ep[X7]] for any random variables X™'), we have:

< log!ﬂ’
«

sup sup Egr lZL bes bt) — LB, F(oe(31)))

FEF T 5T

where ﬁT runs over all distributions over )7T and wT runs over all
functions ¢ : Y'~! — X. The lemma then follows by the operator
equivalence Q7 = supyr 5r Egr and taking the kernel QF := D(Y)
(see the discussion following Definition 10.1). The last part follows by
the fact that the EWA algorithm automatically ensures p; is a convex
combination of {f(x;) : f € F} for all t € [T]. O

Proof of Theorem 10.1. We define the following distribution valued
function class F using hypothesis class H and noise kernel K. For any
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x € X, we denote by OF and OF the sets of noisy label distributions
corresponding to labels 0 and 1, respectively. Since the kernel K is well-
separated at scale 4, under L? divergence, we have, by the hyperplane
separation theorem, that there must exist ¢f € Qf and ¢ € OF such
that L?(q¢X, ¢¥) = L*(Q¥, OF) > .. We now define, for any h € H the
function fy, such that Vx € X, fn(x) = ¢j;)- Let F = {fn : h € H} and
® be the estimator in Online Conditional Density Estimation (OCDE)
game from Lemma 10.3 with class F and L? divergence (using x, j7
from the original noisy classification game). Our classification predictor
is as follows:

§; = arg myin{Lz(q;‘t,ﬁt) cy € {0,1}}. (10.6)

That is, we predict the label y so that gy* is closer to p; under L?
divergence, where p; = ®(x!, 7' 1).

Let h* € ‘H be the underlying true classification function. We have
by Lemma 10.3 and 1/4-Exp-concavity of L? divergence that 3

T
Qi [X_ L(Bes Be) — L (Be, e (x0)) | < 4log]F], (10.7)
t=1

where @% is the operator in Definition 10.1.

For any time step t, we denote by y, = h*(x;) the true label. Since
q,t € Qjt are the elements satisfying L2}, qrt) = L2(QF, OF) > m
and p; is a convexr combination of ¢ and ¢ (Lemma 10.3), we have
qy; is the closest element in QF! to p; under L? divergence. Note that,

we also have p; € QJf. Invoking Lemma 10.2, we find
L*(pe, pe) — L*(Be, @) > L (be, ). (10.8)

Denote a; = L?(py, pr)— L2 (B, fr (x¢)). We have, by (10.8) and fi,« (x¢) =
! that a; > L?(py, fr*(x¢)). Therefore:

1. For all t € [T], a; > 0, since Vp,q, L*(p,q) > 0;

2. If gy # y, then a; > 7 /4. This is because the event {§; # v}
implies that L?(pr, ¢ ) > L*(Pr, 4i",,). Hence, L*(py, fr= (1)) =

3Since QE[F (¥, 57)] < QT[F (%™, §%)] for any kernel K and function F, where
QT is the unconstrained operator in (10.4).
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L?(py, aG) > /4. Here, we used the following geometric fact:

2\/L2(ﬁt,q% \/L2 ptaQyt +\/L pt7q1 yt

=L@y aty,) = V-

This implies that V¢ € [T], a; > L 1{§; # y:}, therefore:

Z Wit # g} < — ZL (Bes Pe) — L (Be, for (x2)).-

L)

The expected minimax risk now follows from (10.7) since |F| < [H|. O

Note that, for the specific setting in Example 10.1, our result yields
risk of the same order up to a constant factor, since 1 — 2+/n(1 —n) =
O((1 - 20)2) for n € [0, 1).

Remark 10.1. Note that the selection of L? divergence plays a central
rule in the proof of Theorem 10.1 thanks to Lemma 10.2. A naive
extension to KL-divergence does not work, mainly due to the fact that
if ¢ is a projection of point p onto a convex set under KL-divergence, it
does not necessarily imply that ¢ is the projection of any point along the
line segment of p and q. Therefore, our central argument in the proof of
Theorem 10.1 that relates 1{g; # y:} and L(p¢, pr) — L(Py, frr(x¢)) will
not go through. This can be remedied for certain special noise kernels,
as discussed in Section 10.5.

10.3 Reduction to Pairwise Comparison: a Generic Approach

As we showed in Section 10.2, minimax risk can be upper bounded by
16loe M| if the kernel is uniformly separated by an L? gap 7,. However,
two issues remain: (i) the proof technique is not directly generalizable
to the multi-class label case. For instance, in the binary case we define
a class F with values ¢¥, ¢¥ that satisfy L?(q¢¥, ¢¥) = L*(Q¥, OF). How-
ever, in the multi-class case, this selection is less obvious since for any
y € Y, the closest points in Q7 to different sets Q;‘, are different. There
is no canonical way of assigning the value f;,(x); (ii) it is unclear whether

L? gap is the right information-theoretical measure for characterizing
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minimax risk, compared to, for instance, the more natural f-divergences.
This section presents a general approach for addressing these issues via
a novel reduction to pairwise comparison of two-hypotheses.

We first introduce a few technical concepts before presenting our
main results. Recall that our robust online classification problem is
completely determined by the pair (#, ) of hypothesis class H C Y
and noise kernel .

Definition 10.4. A robust online classification problem (#, K) is said
to be pairwise testable with confidence § > 0 and error bound C'(§) > 0,
if for any pair h;, hj € H, the sub-problem ({h;, h;}, ) admits a high
probability minimaz risk B°({h;,h;},K) < C(8) at confidence § (see
Definition 10.2).

Clearly, if (#, ) admits a high probability minimax risk B%(H, K),
then it is also pairwise testable with the same risk by taking C(§) =
BO(H,K). Perhaps surprisingly, we will show in this section that the
converse holds as well up to a logarithmic factor.

Assume for now that the pair (H, K) is pairwise testable and class
H = {h1,--- ,hk} is finite of size K. Let ®; ; be the predictor for the
sub-problem ({h;, h;},C) with error bound C(§/(2K)) and confidence
§/(2K) > 0. Let x', j7 be any realization of problem (#, K). We define,
for any h; € H and ¢ € [T], a surrogate loss vector:

Vj € [K], vilj] = 1{®;;(x", §"7") # hi(x;) and hi(x¢) # hj(x4)},
(10.9)

That is, the loss vi[j] = 1 if and only if h;(x;) # h;(x:) and the predictor
@, ;(xt, gt~ 1) differs from h;(x;). Given access to predictors ®; js, our
prediction rule for (H,K) is then presented in Algorithm 10.2.

At a high level, Algorithm 10.2 tries to identify the ground truth clas-
sifier hy+ using the testing results of ®; ;js. Note that pairwise testability
implies, w.h.p., the errors made by tester ®j, ;. on Ay is upper bounded
by C for all k € [K] simultaneously. However, for any other pair ¢, j # k*,
the tester ®; ; does not provide any guarantees, since the samples used
to test h;, hj originate from hy« and is not realizable for ®; ;. The key
technical challenge is to extract the testing results for ®; j~ from the
other irrelevant tests (i.e., ®; ; with k* & {i,7}), even when the k* is
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Algorithm 10.2 Predictor via Pairwise Hypothesis Testing
Input: Class H = {hi,...,hi}, testers ®; ; for ¢,j € [K], and error
bound C

1: Initialize S* « {1,..., K}.

2: fort <+ 1to T do

3: Receive x;.

4: Sample index k; from S* uniformly and make prediction:
?Qt — hiﬂt (Xt).

5: Receive noisy label ;.

6:  Set ST« 0.

T for i € S! do

8: Compute

t
I! = max viljl,
t jelK] ~ r[ ]
where fo[]] is computed via ®; ; as in Equation (10.9).
9: if I} < C then

10: Update S™H < St U {i}.
11: end if

12: end for

13: end for

unknown. This is resolved by our definition of I} in Algorithm 10.2, which
computes for each ¢ the maximum testing loss over all of its competitors.
This ensures that, for ground truth k*, loss If" < C. While for any other
i # k*, we have I > YL vi[k*] > SE_ H{hi(x,) # hi (%)} — C.
Therefore, any hypothesis h; for which I > C cannot be the ground
truth. Algorithm 10.2 then maintains an index set S? that eliminates all
h; for which I{ > C, and makes prediction §; = h];t (x¢) with ky sampling
uniformly from S'. In particular, Algorithm 10.2 enjoys the following
risk bound:

Theorem 10.4. Let H C Y? be any finite hypothesis class of size K
and K be any noisy kernel. If the pair (H, K) is pairwise testable with
error bound C'(9) as in Definition 10.4, then for any J > 0, the predictor
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in Algorithm 10.2 with C' = C(6/(2K)) achieves the high probability
minimax risk (Definition 10.2) upper bounded by:

BY(H,K) < 2(1+20C(6/(2K))log K) + log(2/6). (10.10)

Proof. Let hi« € H be the underlying true classification function and
YT be any fixed functions realizing the features x; = ¥;(§*~1) (see
Definition 10.2). We take C' = C'(§/2K) in Algorithm 10.2. By definition
of pairwise testability and union bound, we have w.p. > 1 — §/2 over
the randomness of §7 and the internal randomness of ®y, s that for
all k € [K],

T
> g (x¢) # - (x5, 571} < C(6/(2K)). (10.11)
t=1

Note that for any other {i,j} # k*, equation (10.11) may not hold
for predictor ®; ;. However, our following argument relies only on the
guarantees for predictors ®;, 5, which effectively makes our pairwise
testing realizable.

We now condition on the event defined in (10.11). Let v} with
k € [K] and t € [T] be the surrogate loss vector, as defined in (10.9).
We observe the following key properties

1. We have for all ¢ € [T] that:
t k* 5

i < — ]; 10.12
g%;vr [J]_C<2K>’ (10.12)

2. For any k # k*, we have for all ¢t € [T]:

t t
5
kr -

max » v,.|j] > Hhi(x,) # hg=(x -C <> 10.13
s A > (S0 # e} ) =€ () 1019

The first property follows from the definition of v§ and (10.11). The
second property holds since the lower bound is attained when 5 = k*.

We now analyze the performance of Algorithm 10.2. By property
(10.12), we know that k* € S for all t € [T, i.e., |S*| > 1. Let Ny = |SY].
We define for all ¢ € [T the potential:

E;= ) max {0, 2C(5/(2K)) — > 1{hi(x,) # by (xr)}} :

keSt r=1
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Clearly, we have E; < 2C(6/(2K))N;. Let Dy = [{k € S* : hy(x) #
hi+(x¢) }|. We have:

D; < Ny — Nyy1 + By — By, (10.14)

Since for any k € S; such that hp(x¢) # hi+(x¢), either k is removed
from S*+! (which contributes at most N; — Ny, 1), or its contribution to
FEy41 decreases by 1 compared to E;. This follows from the construction
of Algorithm 10.2 and property (10.13): once the contribution of k to
E; reaches 0, it must be excluded from S'*!. By the definition of ¢, we
have:

B (Lo (x) # )] = gy < e,
From [83, Thm 2|, we have:

T

N, - N, 1 1 1
ZttHSZ(JF +...+>
2N, N, TN, -1 Nep +1

(10.15)

Moreover, we observe that:

T T
E,— F (@) 2C(6/(2K))N; — E E,— F
Z t H—lS (/( )) 1 2+Z t t+1

t=1 Ne M t=2 Ni
(2) 2C(0/(2K))(Ny — Na)
< N,
2C(6/(2K))Ny — B3 <~ Ey — By
+ +
N, ; N,

(© LN — Ny

< 20(6/(2K _—

< 2C(6/( )); N,

< 20(5/(2K)) log K,

where (a) and (b) follow by E; < 2C(6/(2K))N; and Ny > Niy1; (¢)
follows by repeating the same argument for another 7' — 1 steps.
Therefore, we conclude

T
E | e (xi) # 9} | < (1+2C(6/(2K)))log K,
t=1
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where the randomness is on the selection of l;:t ~ St. Since our selection
of ks are independent (conditioning on S?) for different ¢, and the
indicator is bounded by 1 and non-negative, we can invoke Lemma 2.8
(second part) to obtain a high probability guarantee of confidence 6/2 by
introducing an extra log(2/6) additive term. The theorem now follows
by a union bound with the event (10.11). O

Remark 10.2. Note that, it is not immediately obvious that pairwise
testing of two hypotheses can be converted into a general prediction
rule a-priori. This is because the underlying true hypothesis is unknown,
and therefore many pairs tested do not provide any guarantees. We
are able to resolve this issue due to the definition of the loss I¢ (in
Algorithm 10.2) for each hypothesis i, which considers the mazimum
loss among all its competitors.

Theorem 10.4 provides a black box reduction for converting any
testing rule for two hypotheses into a prediction rule for a general
hypothesis class H, introducing only an additional log |H| factor. This
effectively decouples the adversarial properties of the features x’ from
the statistical properties of the noisy labels §. The rest of this section
is devoted to instantiating Theorem 10.4 into various scenarios by
providing explicit pairwise testing rules.

10.3.1 Pairwise-Testing via Hellinger Gap.

As discussed above, the risk of noisy online classification can be reduced
to the pairwise testing ®;; of two hypotheses. However, we still need to
construct the explicit pairwise testing rules. This section is devoted to
providing a generic testing rule for general kernels.

Let hq, ha be any two hypotheses. We may assume that hq(x) # ha(x)
for all features x, since the agreed features do not impact our pairwise
testing risk. We now provide a more compact characterization of the
kernel I without explicitly referring to the feature x. Following the
discussion after Definition 10.1, we can fix the feature selection rule
YT, and define the kernel by specifying the constrained sets Q) using

only prior noisy labels 4*~!. Thus, we denote Q?Fl = Q’,_Z(Xt), where
x; = (1) and i € {1,2} .
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For any J < T, we denote Qf and Qf as the sets of all (joint)
distributions over Y7 induced by the kernel for hi,ho, respectively.
Equivalently, p € Q7 if and only if for all t € [J] and §'~! € V1 we
have the conditional marginal Py lgt-1 € Q?t_l

The pairwise testing of hy, ho at time step J 4 1 is then equivalent
to the (composite) hypothesis testing w.r.t. sets Qf and Qf. This is
typically resolved using Le Cam-Birgé testing [31, Chapter 32.2] if
the distributions are of product form. However, this does not serve
our purpose, since the distributions in Q;»] can have highly correlated
marginals. Our main result for addressing this issue is a conditional
version of Le Cam-Birgé testing, as stated in Theorem 10.5 below. To
the best of our knowledge, this conditional version is novel.

Recall that the squared Hellinger divergence is defined as H?(P, Q) =

inpr’P,qGQ H? (pa Q)'

Theorem 10.5 (Conditional Le Cam-Birgé Testing). Let Qf and Qf be
the class of distributions induced by a kernel upto time J, as defined
above. If for all t € [J] and §*~! € Vi1, sets Qzljtil, QgF are convex
and H Q(lejt_l, Qgt_l) > 7, for some = > 0. Then, there exists a testing
rule ¢ : Y7 — {1,2} such that: *

sup  {Prys [0(57) # 1]+ Prys [6(57) # 21}
peQy qeQ]

J
<2T[(1 = y/2) < 2e78 i,

t=1
Sketch. The proof requires a suitable application of the minimax the-
orem by expressing the testing error as a linear function and arguing
that Q;-] s are convex. The error bound is then controlled by a careful
application of the chain-rule of Rényi divergence. We defer the detailed
proof to Section 10.4. O

Theorem 10.5 immediately implies the following cumulative risk
bound:

4Note that the tester ¢ implicitly depends on the feature selector 7. This is
not essential for our purposes, since such a dependency can be reduced to that of
x” (via a more tedious minimax analysis that considers the joint distribution over
x7, g}‘]), which are observable to the tester.
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Proposition 10.1. Let {h1,ha} C Y* and K be a noise kernel. For any
t € [T], we denote 7v; = infy HQ(Q‘?_l, Qgt_l), where Qgt_l is the
distribution class induced by KC as discussed above. Then, for any § > 0,
the high probability cumulative risk:

n
BY({h1,ho},K) < arg min {n eN: Z’Yt > 210g(2/6)} )

t=1
Proof. Let n* be the smallest number satisfying the RHS. If ¢ < n*
(this can be checked at each time step ¢ using only x* and K), we predict
arbitrarily. If ¢ > n* + 1, we use the tester ¢ in Theorem 10.5 with
J = n* to produce an index i € {1,2} and make the prediction h;(x¢)
for all following time steps. That is, we only use the tester at step
n* + 1 and reuse the same testing result for all following time steps.
By Theorem 10.5, the probability of making errors after step n* + 1 is
upper bounded by §. Therefore, the cumulative risk is upper bounded

by n* with probability > 1 — é. O
Instantiating to the well-separated kernels, we arrive at:

Corollary 10.6. Let {h1,ho} C Y* and K be a well-separated kernel
with gap 74 under Hellinger distance (Definition 10.3). Then, for any
6 > 0 we have the high probability cumulative risk:

B’ ({h1,h2},K) < 2108(1/0)
Tu
Proof. Note that, for any time step t such that hq(x;) # ha(x;), we have
the gap ¢ in Proposition 10.1 equals ;. We now have the following
prediction rule: for any time step ¢ such that hy(x;) = ha(x;), we predict
the agreed label; else, we predict the same way as in Proposition 10.1.
Clearly, we only make errors for the second case. By Proposition 10.1,

we have that the number of errors is upper bounded by 21%(}11/5). O

10.3.2 Characterization for Well-Separated Kernels

In this section, we establish matching lower and upper bounds (up to a
log |#H| factor) for the minimax risk of a general multi-class hypothesis
class w.r.t. the Hellinger gap, in contrast to Theorem 10.1, which applies
only to binary label classes w.r.t. L? gap.
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Theorem 10.7. Let % C Y% be a finite class of size K, and K be

a kernel that is well-separated at scale vy w.r.t. Hellinger divergence.

Then, the high probability minimax risk with confidence § > 0 is upper

bounded by:

8log(4K /) log K
Tu

BY(H,K) < + log(2/4). (10.16)

Moreover, for any kernel K such that there exist at least log K features
x for which there exists y # 3’ € ) such that we have H?( b Q;‘,) < Y,
then there exists a class H of size K for which:

log K )
Tn .

Fr(H,K) > Q(

Proof. By Corollary 10.6, we know that (H,K) is pairwise testable
with error bound C(J) = 21%&{2/6). The upper bound on classification
risk then follows from Theorem 10.4 by noticing that C'(6/(2K)) =
2log(4K/6)

”}I({) prove the lower bound, we denote 7 = log K with K = |H|, and
X1, ,X; be 7 distinct elements in X satisfying the condition of the
theorem. We define for any b € {0,1}” a function hyp such that for
all i € [], hp(x;) = y; if b[i] = 0 and hp(x;) = y, otherwise, where
y; # vy, € Y are the elements that satisfy infpegz‘j,qeg’y‘}{HQ(Pv 7))} < T

Let H be the class consisting of all such hy,. Let ¢; € Q3 and ¢] € Q;‘f

be the elements satisfying H?(qg;, ¢}) < yu. We now partition the features
xT into 7 epochs, each of length T'/7, such that each epoch i has constant
feature x;. Let h be a random function selected uniformly from H. We
claim that for any prediction rule ¢; and any epoch i we have:

(+1)T/7 1
Ep g7 [ > 1{h(x) %z?t}] >Q (7) (10.17)

t=iT/7—1 "

where g, ~ ¢; if h(x;) = y; and §; ~ ¢, otherwise. The theorem now
follows by counting the errors for all 7 epochs.

We now establish (10.17) using the Le Cam’s two point method.
Clearly, for each epoch ¢, the prediction performance depends only on
the label y; = h(x;), which is uniform over {y;,y.} and independent
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for different epochs by construction. For any time step j during the ith
epoch, we denote by 9/~ and 77 ~! the samples generated from ¢; and
¢, respectively. By the Le Cam’s two point method [31, Theorem 7.7]
the expected error at step j is lower bounded by:

LTV g | L BP0 B /)
2 - 2

(10.18)
where the inequality follows from [31, Equation 7.20]. Note that the
RHS of (10.18) is monotonically decreasing w.r.t. H2(§7~1,7771), since
H?(p,q) <2 for all p,q.

By the tensorization of Hellinger divergence [31, Equation 7.23], we
have:

HA(3 577 =2 - 2(1 = H?(qi,47)/2) " <2 - 2(1 —y/2) 7,

where the last inequality is implied by H?(g;,q}) < 7. Using the fact
that log(1 — z) > =%, we have, if 9 < 1 and j -1 < %H then
2 —2(1 —44/2)771 < 2(1 — e7!) < 2. Therefore, the RHS of (10.18) is
lower bounded by an absolute positive constant for all j — 1 < %H, and
hence the expected cumulative error will be lower bounded by Q(1/vx)

during epoch i. This completes the proof. O

It is interesting to note that the bound in Theorem 10.7 is indepen-
dent of both the size of label set Y and the noisy observation set 57, as
well as the time horizon 7. Moreover, the dependency on the Hellinger
gap 7y is tight upto only a logarithmic factor log|H|. This factor is
inherent from our reduction to pairwise testing in Algorithm 10.2 and
we believe that removing it would require new techniques.

Remark 10.3. Note that H?(p,q) > 4L?(p, q) holds for any p, q. Thus,
the Hellinger dependency of Theorem 10.7 on 7y is tighter than the
L? dependency of Theorem 10.1. Specifically, if we take p to be the
uniform distribution over ) and ¢ to be the distribution that takes

half of the elements with probability mass % and half with %, then,

L?(p,q) = %, while H?(p,q) > Q(e?). Therefore, the differences can

grow linearly w.r.t. the size of set ).
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10.3.3 Soft-Constrained Gaps

The well-separatedness condition in Theorem 10.1 and Theorem 10.7
requires a uniform gap for all x;s. This may sometimes be too restrictive.
We demonstrate in this section that such a “hard" gap can be relaxed
to a “soft" gap, while still achieving sub-linear risk.

To this end, we consider a slightly relaxed adversary, where we
require that for some constant A > 0 and 0 < « < 1, the following
soft-constraint holds:

9 ~t—1 o
vr € (0,1/2], Zl{tllgg.)tly;;lféy‘[{ (Qy QZ, )gr}gAma,
(10.19)
where QgFl Qyt ) for some fixed (unknown) feature selector T
as in Section 10.3.1.

The following result follows similarly as Theorem 10.7:
Proposition 10.2. We have:

sup sup ir(H,K) = O(T' ™),
K H:|H|I<K

where the © hides poly-logarithmic factors w.r.t. T and K, and K runs
over all kernels that satisfy (10.19).

Proof. By Theorem 10.4, we only need to consider the testing of two
hypotheses {h1, hs} to derive an upper bound. Let v be a parameter
to be determined later. We have by (10.19) that the number of steps ¢
for which infﬂt—lej;t—l infy ey H 2(Qgt71, ngil) < « is upper bounded
by A’yﬁT. We may assume, w.l.o.g., that all such steps are within
the first A'yﬁT time steps, since we can simply filter out such steps
(using kernel map K and the observed features x;s) when constructing
the testmg rule. Note that the rest of the steps satisfy for all '~ and
y # vy € Y that HQ(Qg ,Qg, 1) > ~. By Corollary 10.6, the number

of errors after step A’yﬁT is upper bounded by O(%) Therefore, the
total number of errors is upper bounded by

inf AfyﬁT + 2log(1/9)

<O(T'™%),
0<y<1/2 Y
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where the upper bound follows by taking v = 7~ (=9,

To see the lower bound, we define a kernel with the first Avﬁ’f
steps of gap 7 (to be determined) and define the remaining steps
arbitrarily as long as it satisfies (10.19). By Theorem 10.7, we have if
A*yﬁT > logT‘H‘, then an Q(long') lower bound holds. This is satisfied

1—
when taking v = (%) a, which completes the proof. O

10.3.4 Unknown Gap Parameters.

While our previous results provide sub-linear risk that is tight up to poly-
logarithmic factors, we have assumed that full knowledge of the kernel
sets Q;"/s is available to the learner. In some cases, such information
cannot be known completely (or only partially known). For instance, in
the classical setting of Tsybakov noise as discussed in Diakonikolas et
al. (2021), the gap parameters are not assumed to be known.

To account for this, we introduce the following noise kernel, analo-
gous to the Tsybakov noise in batch learning. For simplicity, we take
y=)= {0,1}. Let g € )7, we denote ej as the distribution over Y that
assigns probability 1 on § and denote u as uniform distribution over .
For any x”, the kernel K satisfies oyt = {Ney + (1 = XN)u: XN > A},
subject to the condition that for some A >0 and 0 < a < 1:

T
vr e (0,1/2], 12 {<r}§AT1aw. (10.20)
T4
We assume that the parameters A;s are (obliviously) selected independent
of the noisy observation §7. Crucially, we assume that the parameters
A¢s are unknown to the learner. Observe that, the set Q;‘t is completely
determined by the parameters \; and y, irrespective of x;.

Theorem 10.8. Let H# C {0, 1} be any finite class and K be a kernel
that satisfies condition (10.20). Then, the expected minimax risk is
upper bounded by:

2(1—a)

fT(H,/C) < O(T 2—a )

where O hides poly-logarithmic factors on 7" and |H|. Moreover, there
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exist class H and kernel K satisfying (10.20), such that:
~ 2(1—a)
Fr(H,K) > Q(T72=").

Proof. The lower bound follows by the same argument as in Proposi-
tion 10.2 by noticing that H2(Qx!, Q') = ©(A\?) for sufficiently small
A¢. Therefore, it is sufficient to find the A for which A\NT=aT > 10%\#.

l—a
This is satisfied when A = (%) e
For the upper bound, we leverage Theorem 10.4 by constructing
an explicit universal pairwise testing rule. Let hi, he be any two hy-
pothesises. We assume, w.l.o.g. (by relabeling), that h;(x) = 0 and
he(x) = 1 for all x. At each time step ¢, we compute the empirical mean
[l = %, and predict 0 if ji; < % and predict 1 otherwise. Let
A1, -+, A7 be any configuration of the parameters. Assume, w.l.o.g.,
that h is the ground truth classifier. We have for any given §*~! the
conditional expectation E[j | §'~!] < 3 — % By the Hoeffding-Azuma
inequality (Lemma 2.7), we have for all ¢ € [T], the error probability:

Pr [ﬂt > 1] < e~ (im0 /20,
5| <

Therefore, for any given § > 0, we have by the union bound that w.p.
> 1 — ¢ the total number of errors made by the predictor is upper
bounded by

T t—1
errp =Y 1 {Z A< y/2t 1og(T/5)} : (10.21)
t=1 |(j=1

We now upper bound errp using property (10.20). Note that, for any
given gap parameters \i,---, Ay, the worst configuration for errp is
when A1 < Ao < --- < Ap. To see this, we use the following “switching"
argument. Suppose otherwise, there exists some j for which A\j 11 < A;.
We show that switching A; and ;1 will not decrease errp. This follows
from the fact that the switch will not affect any time steps except
step 7 + 1 in which case the sum of gap parameters decreases. We
can therefore assume, w.l.o.g., that the gap parameters are monotone
increasing. Now, we have by (10.20) that for all j € [T7:

i 1{n < (/A=) <
t=1
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11—«

This implies that for any time step j, we have \; > (ALT) ¢ since

the gap parameters are monotone increasing. Therefore, by integration
approximation, we have:

SN > QnaT 5,
j=1

2(1—a)

Setting naT~a" < n3 - V210g(T/9), we find that n = O(T 2=a ).
This implies that for any time step ¢ > n, the t’th indicator in (10.21)
equals 0. Therefore, the risk of pairwise testing is upper bound by
errp < O(TQ(%;)) w.p. > 1—d, where O hides the factor log(7'/§). The
upper bound of the theorem now follows by Theorem 10.4. O

Remark 10.4. Observe that the lower and upper bounds of Theorem 10.8
match up to poly-logarithmic factors w.r.t. T and |H|. Moreover, the
proof technique for the upper bound can be generalized to the case when
QX encompasses any distributions over [0, 1] with means in [0, £5]
(and in [12¢,1] for OF), not only for Bernoulli distributions as in

(10.20).

Note that, the pairwise testing rule derived in the proof of Theo-
rem 10.8 requires no information about the underlying distributions.
This differs from the general testing rule derived from Theorem 10.5,
which requires the likelihood ratio of distributions pi € Qf and p} € Qf
that achieve |[p} — p3||TV = TV(Q{, QF) (see Section 10.4).

10.4 Proof of Theorem 10.5

We start with an application of the minimax theorem to hypothesis
testing °.

Lemma 10.9. Let Py and P; be two sets of distributions over a fi-
nite domain Q. If Py and P; are convex under L; distance (i.e., total
variation), then

min su EwN 1-— w)|+ Eww w =
¢ : Q—[0,1] pOGPO,ZI?lG'Pl{ po[ (b( )] P [¢( )]}

5This result was mentioned in [31, Chapter 32.2], without providing a proof.
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=1- inf - .
po€Po,p1EP1 HPO leTV

Moreover, if ¢* is the function that attains minimal, then the tester
P*(w) = 1{¢p*(w) < 0.5} achieves:

sup  {Prompy [ (w) # 0] 4 Prony, [¢7(w) # 1]} <
po€Po,p1EP1

<2(1- inf — .

o ( Po€Po,p1EP1 Hp(] leTV)
Proof. Observe that the function ¢ can be viewed as a vector in [0, 1]%.
Moreover, the distributions over Q can be viewed as vectors in [0, 1]%
as well. Therefore, we have

Eonpo[1 = ¢(w)] + Ewonpy [9(w)] = (po; 1 = @) + (p1,9),

which is a linear function w.r.t. both (pg,p1) and ¢. Since the both
Po x Py and [0,1] are convex and [0, 1] is compact, we can invoke
the minimax theorem [9, Thm 7.1] to obtain:

min su Eumpo[1 — ()] + Epmp, [p(w
¢ Q*[Oal]poepo,;}))lépf po[ )l P [P(w)l}

= su min Epop [1 — d(w)] + Epn w
o i B[l = 9] + B [()]}

= sup {1l—[[po —pillrv},
Po€Po,p1EPL
where the last equality follows by Le Cam’s two point lemma [31,
Theorem 7.7]. Let ¢* be the function that attains minimal and ¢*(w) =
1{¢*(w) < 0.5}. We have 1{¢*(w) # i} < 2(1 —i — ¢*(w)) for all
i € {0,1}. To see this, for i = 0, we have *(w) # 0 only if ¢*(w) < 0.5,
thus 1 — ¢*(w) > 0.5 (the case for i = 1 follows similarly). Therefore,
we have for all pg € Py, p1 € P1:

Propo[¢07 (W) # 04Promp, [ (w) # 1] < 2(Euwnpy [1=0" (W) +Einp, [67(w)])-

This completes the proof. O
We have the following key property:

Lemma 10.10. Let Qf and Qf be the sets in Theorem 10.5. Then Qf
and Qg are convex.
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Proof. Let p1,p2 € @ for i € {1,2} and \ € [0,1]. We need to show
that p = Ap1 + (1 — A\)p2 € Q7 as well. For any given ¢t € [J] and

g1 e Y1, we have:

i An(@) (1= Npa(3)
p(yt | Y ) - /\pl(gt—l) + (1 — )\)pQ(gt—l)
~t—1 gt—1 St—1
_ Afzj((;_l))pl(gt 7+ (1 )\)]Z((gyt_l))pQ(ﬂt |57 e ¢

where the last inclusion follows by convexity of Qi‘?Fl as assumed in
Theorem 10.5. Therefore, we have p € Q;] by definition of Q;. O

Now, our main technical problem is to bound the total variation
TV(Q{, QJ). The primary challenge comes from controlling the depen-
dencies of conditional marginals of the distributions. To proceed, we
now introduce the concept of Renyi divergence. Let py, ps be two dis-
tributions over the same finite domain €2, the a-Renyi divergence is

defined as:
1 p1(w) > a]
po— log Eynp, Kp @) .

If p, g are distributions over domain €21 X {29 and r is a distribution over

Da(p17p2) -

Qq, then the conditional a-Renyi divergence is defined as:

Da(paq | T) =

a—1 IOg Ew1~r
w282

Z p(w2 | wi)%q(w2 | wl)l_a] .

The following property about Renyi divergence is well known [31,
Chapter 7.12]:

Lemma 10.11. Let p, ¢ be two distributions over Q1 x Qs and p™®) and
¢V be the restrictions of p, ¢ on €, respectively. Then the following
chain rule holds:

Do (p,q) = Do (M, qV) + Do(p, q | 7),

1—ag—(a=1)Da(p M)

where 7(w;) = pM (w1)%¢M (wy) e is a distribution

over ().
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We now arrive at our main technical result for bounding the Renyi
divergence between Qi] and Q‘QJ in Theorem 10.5:

Proposition 10.3. Let Qi] and QQJ be the sets in Theorem 10.5. If for

all t € [J] and gt—l € j;t_1, we have infpteQ;jt_l,Qtngt_l Do (ptyqr) = m

for some 7; > 0. Then

J
inf  Da(p.g) > ) me
peQ qeQ] o ;

Proof. We prove by induction on J. The base case for J =1 is trivial.
We now prove the induction step with J > 2. For any pair p € Qf
and ¢ € Qf, we have by Lemma 10.11 that Dy (p, q) = Da(p™, ¢V) +

J-1

Do (p,q | 7), where p(V), ¢(1) are restrictions of p, ¢ on § and r is a

distribution over ’~!. By definition of a-Renyi divergence, we have:

. 1 g 1N
Da(pq|7) > inf ——log 3 p(gs | 577" a(5s | 5771~
y - - ~
gs€Y

= gl}lfl Da(p:gﬂg]—l y QQJ@J—l)

—

o ®)
> infDa(p.g) =,
peQy” ,qeQy

=

where (a) follows since pj 701 € Q%J and gz 501 € QgJ by the
definition of Qf and Qf; (b) follows by assumption. The result then
follows by induction hypothesis D, (p(l), q(l)) > 2212—11 n, since pt) €
Q‘{_l and q(l) € QQ‘]_I. O

The following result converts the Renyi divergence based bounds to
that with Hellinger divergence.

Proposition 10.4. Let Qi] and QQJ be the sets in Theorem 10.5. If for

~ St—1
all t € [J] and §'~! € Y=, we have Hz(Qll/t
¢ > 0. Then:

gtfl
, Q5 ) >y for some

J
inf  H?(p,q) >2 (1 - [Ia- %/2)> :

peQf g€y =1
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Proof. Observe that, for any distributions p, ¢ we have:
H?(p,q) = 2(1 — e—%D1/2(p7Q)). (10.22)

Specifically, for given p € Qf and ¢ € Qf, we have:

J
1 —H2(p, Q)2 = e*%D1/2(P7‘Z) < e—%Zle m = H e —3m H (1—7/2),
t=1

where ;s are the constants in Proposition 10.3 and the last inequality
1

follows by e™ 2" <1 — /2 due to (10.22) again. This completes the

proof. O

Proof of Theorem 10.5. We have by Lemma 10.9 that the testing error
is upper bounded by 1—inf,c9, 4c0, |[p—¢||Tv. Fix any pair p, ¢, we have
by relation between Hellinger and total variation that 1 — ||p — ¢||tv <
1— %H2 (p, q). The result follows by Proposition 10.4. O

10.5 Tight Bounds via Log-loss

In this section, we introduce a refined technique based on the reduction
to online conditional distribution estimation as discussed in Section 10.2.
We shall use again Lemma 10.3 but with log-loss. This yields tight risk
dependency on both log |H| and the gap parameter for certain special,
yet important, noise kernels.

10.5.1 The Randomized Response Mechanism

Let Y =Y = {1,--- , M}. We denote by u the uniform distribution
over Y and eg the distribution that assigns probability 1 on § € Y. For
any 1 > 0, we define a homogeneous (i.e., independent of x) kernel:

Vxe X, yel, K'"x,y) ={(1—-7n)ey, +nu:n €[0,n)}.

Note that, this kernel can be interpreted as the randomized response
mechanism with multiple outcomes in differential privacy [90], where 7 is
interpreted as the noise level of perturbing the true labels. For instance,

it achieves (e, 0)-local differential privacy if we set n = %
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Theorem 10.12. Let # C Y* be any finite class and K7 be as defined
above with 0 < 1 < 1. Then, the expected minimax risk is upper
bounded by:

log | #]
022
Moreover, the high probability minimax risk at confidence 6 > 0 is upper
bounded by:

rr(H,K") <

log [H| + 21og(1/4)
(1—mn2/4

Furthermore, for 1 — n < - we have B?(H,K") < O (W).

B (H,K") <

Proof. Our proof follows a similar path as the proof of Theorem 10.1.
For any h € H, we define a distribution-valued function f; such that
fu(x) = (1 =n)epx) +nu. Let F = {fy : h € H}. Invoking Lemma 10.3
with log-loss and using the fact the KL-divergence is Bregman and
1-Exp-concave, there exist estimators p such that:

T
sup Qk | > KL(pt, pr) — KL (5, f(Xt))] < log [H],
feF t=1

where Q% is the operator in Definition 10.1. We now define the following
classifier:

g = arg mgX{ﬁt[y] cy eV}

Note that, this is a multi-class classifier. Let h* € ‘H be the underlying
true classification function and $’ be the noisy label distributions
selected by the adversary. We have:

Lemma 10.13. The following holds for all ¢ < T

KL(ﬁtaﬁt) - KL(ﬁta fh* (Xt)) > 0.

Moreover, if §; # h*(x¢) then:

KL(Br, pr) — KL(Bt, fr (x4)) > (1 —m)?/2.

Proof of the Lemma. Let y; = h*(x¢) and e; € D()) be the distribution
that assigns probability 1 on y;. By the definition fp,«(x;) = Aes+(1—A)u
and py = Mer + (1 — A\p)u, where A = 1 —n and Ay = 1 — 7 for
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some 1; < 1. Since 0 < 1y < 7, we have 1 > XAy > A. Note that,
KL(pt, pr) —KL(Dt, fr+(x¢)) is a linear function w.r.t. A; (Proposition 2.1),
and it takes the minimal value at A\; € {1, A\}; therefore:

KL(p¢, Pe) —KL(Pt, for (x¢)) > min{log(fr+ (x¢)[ye] /Delye]), KL(fnx (x¢), De) }-

Clearly, the second KL-divergence term is positive. We now show that
log(fn+ (x¢)[ye] /Dtlyt]) > 0. To see this, we have by Lemma 10.3 that p; is
a convex combination of { f(x;) : f € F} and therefore p, = Aa;+(1—N)u
for some a; € D(j}) This implies that p[y:] = Aag[ye] + (1 — )\)ﬁ and
Sre (%) [ye] = A+ (1= X)7. Since a;[y;] < 1, we have fi- (x¢)[yi] > pe[yi]-
The first part of the claim now follows.

We now prove the second part of the claim. Note that in order for
Ut # yr we must have a;[y;] < %,
maximum probability mass under p;. Therefore,

A+ (1-=N)/M
A2+ (11— A)/M)
/2

= log (1 N2 ra-nM

where the second inequality follows from A/2 + (1 — \)/M < 1/2.
Furthermore, we have:

. 1 .
KL(fr+(x¢), De) > §||fh*(xt) —pe|F > A%/2,

where the first inequality is a consequence of Pinsker’s inequality [31]
and the second inequality follows by || fy«(x:) — Pel[1 = Alley, — ael|1 =
A(2|1 = ay[wi]]) > A, since at[y;] < 3. The claim now follows by the fact
that log(1 + ) > A2/2forall 0 < A < 1. O

since g is defined to be the label with

log(fa- (x¢)ve) /Belu]) > log (

) > log(1+ )

The first part of the theorem now follows by the same argument
as the proof of Theorem 10.1. The proof of the second and third
parts requires a careful analysis relating log-loss with the Hellinger
distance and employing a martingale concentration inequality similar
to [91, Lemma A.14]. We defer the technical proof to Section 10.5.3 for
readability. O

To complement the upper bounds of Theorem 10.12, we have the
following matching lower bound follows directly from Theorem 10.7:
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Corollary 10.14. There exists a class H such that for 1 — n <« ﬁ we

have: log [ ]
- og |H
m > [ Rt E I
T(H,K)_Q(M(l_n)2>

Proof. Specializing to the setting in Theorem 10.7, we know that the
squared Helliger gap is of order:

(\ﬁ_ [ (M—l)n)QN M1 )
M M 4 ’

when 1 — n < ﬁ (by Taylor expansion). This implies an 2 (

log |#| )
M(1-n)?
lower bound. n

Remark 10.5. Taking n = for sufficiently small €, we have

M
ec—14+M

M1
o) = 0 (FHoEH

€2

and the randomized response mechanism with kernel K achieves (¢, 0)-
local differential privacy. This holds even when the noise parameters
used by different local parties vary, as long as they are upper bounded

by n.

10.5.2 Kernel Set of Size One

In this section, we establish an upper bound for the special case when
the kernel set size |Qy| = 1 for all x,y. This matches the lower bound
in Theorem 10.7 up to a constant factor.

Theorem 10.15. Let H C Y% be any finite class and K be any noise
kernel that is well-separated at scale v w.r.t. squared Hellinger distance
such that |QX| =1 for all x,y. Then the high probability minimax risk
at confidence ¢ > 0 is upper bounded by:

5 log(|#|/6)
B (H,/C)go( - )

Proof. Our proof follows a similar path as in the proof of Theorem 3.3,
but replaces L? loss with log-loss. Specifically, for any h € H, we define
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fr(x) = q}’l‘(x), where qﬁ(x) is the unique element in Q;l‘(x). Denote
F ={fn:h € H} Werun the EWA algorithm (Algorithm 3.1) over F
with 7 = 1 and ¢ being the log-loss, and produce an estimator p’. The
classifier is then given by:

o . H2 Xt A ‘
Ui argggg{ (a5, De)}

Now, our key observation is that the noisy label distribution p; = fp,«(x¢)
is well-specified (since |Q}| = 1, the only choice for p; is fy«(x,)), where
h* is the ground truth classifier. Therefore, invoking [91, Lemma A.14],
we find:

T
Pr > H*(pr,pr) < log | F| +2log(1/6)| >1—4.
t=1

We claim that 1{g: # h*(x:)} < %HHQ(ﬁt,ﬁt). Clearly, this automat-
ically satisfies if g, = h*(x¢). For g, # h*(x;), we have H2(q;,}3t) <
H?(q (x0)? pt) = H?(ps, p¢) by definition of §;. This implies that:

Tu

N
H2(ppe) 2 JHA ) G5 ) 2 1

47 M
where the first inequality follows by triangle inequality of Hellinger
distance (the factor % comes from the conversion from squared Hellinger
distance to Hellinger distance), and the second inequality follows by
definition of ~y. Therefore, we have w.p. > 1 — § that:

T

. * 4
D g # W (xe)} < -, log | 7] + 2log(1/9)).
t=1 H
This completes the proof since |H| > |F]|. O

Observe that the key ingredient in the proof of Theorem 10.15 is
the realizability of p; by f« due to the property |Q| = 1, which does
not hold for general kernels.

10.5.3  Proof of High Probability Minimax Risk of Theorem 10.12

We begin with the following key inequality:
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Lemma 10.16. Let p = (1 — n')eg + n'u, p = (1 — n)eyg + nu and
p = (1 —mn)a+nu, where ej,a,u € D(j/) and 0 <7’ <n <1, such that
eg is the distribution assigning probability 1 on ¢, u is uniform over Yy
and a € D(Y) is arbitrary. Then:

o [DLY]
Z~p[y]\/p[g,] < Z
§'ey

y'ey

=Y \/pl#1p[7] (10.23)

Fey

Pmof. Denote |Y| = M, and let r € RY be the vector such that
= /ply’]/p[y’']. We have the LHS of (10.23) equals egr—l—n’(u—eg)Tr.

We clalm that f(n ) &f el 7“—1—77 '(u—eg) Tr attains maximum when 7’ = 7,

which will finish the proof It is sufficient to prove that (u —ej)Tr >0
since f(n') is a linear function w.r.t. . We have:

/ _ [old
~,€y ply)
We only need to show that Vi’ € Y with § # §, we have /p[y]/p[7] >

/9l e

plil - 9ld)

ply'] — Pl
Note that, plg] = 1 —n+ 5, pl#'] = 37, Pl = (1 = n)a[g] + 77 and
Pyl = (L =n)aly'] + 1%, i.e., we have p[g] > p[g], B[§'] > p[g]. The result
now follows by the simple fact that for any a > b,c > d > 0 we have
iz E

We are now ready to state our main result, which establishes the
high probability bounds in Theorem 10.12.

Theorem 10.17. Let H C Y% be any finite class and K7 be the kernel
in Section 10.5 with 0 <7 < 1. Then, the high probability minimax risk
at confidence ¢ is upper bounded by:

log || + 21og(1/9)
—n)?/4

Furthermore, for 1 —n < ﬁ we have BY(H,P,K") < O (W).

BY(H,P,K") <
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Proof. Let F be the class as in the proof of Theorem 10.12 and p; be
produced by the EWA algorithm under Log-loss. We have by Proposi-
tion 2.2 and Theorem 3.5 that for any §7 € Y7
T X -
sup Z log f (Xt~) [§t]

> < log|F]|
xTexT ;— t[ t]

where f* is the corresponding function of the underlying truth h* € H
(see the proof of Theorem 10.12). We now assume §’ are sampled from
P’ where T are the noisy label distributions selected by the adversary.
Denote by E; the conditional expectation on §*~!. We have:

_1loe G054 Dly o -
B[ o398 S = By [ < S il e
g€y
where the inequality follows from Lemma 10.16. By a similar argument
as in the proof of [91, Lemma A.14], we have:

s 3 — o (1= S H2 1. £(x0) ) < — 5 H s £ 0),

where the first equality follows by definition of squared Hellinger diver-
*(x) [9¢]

gence. Taking X; = log A % and invoking Lemma 2.9 we
have w.p. >1—6

T
[Z (De, 1 (x1)) < log|F|+2log(1/9)| >1—04.

1

Let now §; = argmaxg{p:[7] : § € Y}. We have, if §; # h*(x¢)

H2(py, f*(x)) > |15 — f(xe)|[3/4 > (1 —n)?/4,

where the first inequality follows from /H?(p,q) > ||p — q||1/2 [31,
Equation 7.20] and the second inequality follows from the proof of
Lemma 10.13. Since H?(p, ¢) > 0 for all p, ¢, we have w.p. > 1 — § that:

log [H| + 21log(1/6)

a— 2/
To prove the second part, we observe that if g, # h*(x;), then p, =
(1—n)a;+nu such that a;[h*(x;)] < &. Since f*(x;) = (1— n)en*(x,) 1,

T
ST # B (xi)} <
t=1
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we have by direct computation that:

20 £ c0) > ({0 =2+ 25—\ [1-n+ >NM<116—77>2

where the last asymptote follows by Taylor expansion

M(n—1)° -

Mn—l 1 —n)?
L o> M1 — )
n=3
and the remainder term converges when 1 — 7 < ﬁ O

Remark 10.6. Note that, Lemma 10.16 is the key that allows us to
reduce our mis-specified setting to the well-specified case, such as [91,
Lemma A.14], for which a reduction to the Hellinger divergence is
possible.

10.6 Extensions for Stochastically Generated Features

We have demonstrated in previous sections that the minimax risk of
our robust online classification problem can be effectively bounded for
a finite hypothesis class H and adversarially generated features x’. We
now demonstrate how this result can be generalized to infinite classes
and general stochastic feature generating processes via the notion of
stochastic sequential covering introduced in Chapter 7.2.

Infinite Classes. The following result that reduces the minimax risk
of an infinite class to the size of the stochastic sequential cover.

Theorem 10.18. Let H C V¥ be any hypothesis class, P be any class of
random processes over X1 and K be a noise kernel that is well-separated
w.r.t. Hellinger divergence at scale 4. If there exists a finite stochastic
sequential cover G C VX" of H w.r.t. P at scale 0 and confidence & /2 >0,
then there exists a predictor such that for all T € P, if x” ~ vT then

w.p. > 1 — § over all randomness involved, the risk is upper bounded
by:

o (89D et41/5))

Tu
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Proof. Let A be the event over x! so that Vh € H, 3g € G such that
vt € [T], h(x;) = g(x"). Let now v”" € P be the underlying true feature
generating process. We have by the definition of stochastic sequential
covering that Pryr[A] > 1 — §/2. We now observe that Theorem 10.7
holds for sequential functions as well. Therefore, taking confidence
parameter §/2, the prediction rule derived from Theorem 10.7 w.r.t.
class G yields high probability minimax risk upper bounded by:

log(|G|) log(4|G/9)
0 ( - ) . (10.24)

Let h* € H be the underlying true function, x € A be any realization
of the feature, and ¢g* be the sequential covering function of h* at scale
0. Note that, ¢* has the same labeling as h* on x!. Therefore, any
predictor has the same behaviours when running on A* and ¢*, and
thus the high probability minimax risk for H is upper bounded by that
of G. The theorem now follows by a union bound. O

Note that, any bounds that we have established in the previous
sections for finite class can be extended to infinite classes; these bounds
depend only on the stochastic sequential cover size using a similar
argument as Theorem 10.18. We will not discuss all such cases in the
interest of clarity of presentation. As a demonstration, we establish the
following concrete minimax risk bounds:

Corollary 10.19. Let H C V¥ be a class with finite Littlestone di-
mension Ldim(#H) [92] and |Y| = N. If the features are generated
adversarially, and K is any noise kernel that is well-separated w.r.t.
Hellinger divergence at scale 7. Then, the high probability minimax
risk at confidence ¢ is upper bounded by:

B H.K) < O (Ldim(H)QIOgZ(TN) + Ldim (%) log(4TN/5)> |
Tu
Moreover, for the noise kernel K" as in Theorem 10.12, the high proba-

bility minimax risk with confidence d > 0 is upper bounded by:

(Ldim(H) + 1) log(TN) + 210g(1/(5).

B < (12
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Proof. The first part follows directly from Theorem 10.18 and the fact
that the sequential covering of H w.r.t. adversarial selection of X7 is of
order (TN)LimFH)+1 1y [92, Theorem 25]. The second part follows by
Theorem 10.12. O

We complement this corollary with the following lower bound:

Proposition 10.5. For any d, N € N and 4 > 0, there exists a class
H C Y with Ldim(#) < d and |Y| = N, and a kernel K with Hellinger
gap Q(yu), such that:

Fr(H,K) > Q (dlogN> .

TYu

Proof. We define ) := [N], X := {x1,--- ,X4}, and H := Y¥. It is easy
to verify that Ldim(#) = d. Let M = clog N and C C {—1,+1}*M be
a maximum packing such that Vv # va € C,Ham(vy,va) > % and
Ham(v;,1) = M, where Ham denotes the Hamming distance and 1 is
the all-1 vector. By [93, Thm D.1], we have |[C| > N for an appropriately
selected constant c. Therefore, for any y € )V, we can identify a unique
vy € C. We now define, for any y € V, the distribution p, over Y = [2M]

such that . ~
Vg e, pylil = +2‘]’\Z{y]€,

where € > 0 is a small parameter to be selected. It is easy to verify that
py is indeed a probability distribution. Moreover, for all y1 # y2 € Y, we
have KL(py,, py,) < O(€?) and H?(py,, py,) > Q(e?). The first inequality
follows from simple approximation, and the second inequality follows
from the packing property of C. We now take €2 = 7 and define the
kernel KC(x,y) := {py}. To prove the risk lower bound, we partition
the time horizon into d blocks, each of size T'/d, with the ith block
taking feature x;. By Fano’s inequality (cf. Chapter 2.4) and a similar
argument as in Theorem 10.7, we have that the expected risk is lower

bounded by € (#22). O

Remark 10.7. Note that in Proposition 10.5, we have a log N depen-
dency on the label set size. This contrasts with the (agnostic) noiseless
case [94], where the regret is independent of the label set size N.
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o-Smoothed Processes. Finally, we apply our results for a large class
of distributions over X7 known as o-smoothed processes discussed in
Chapter 8. To briefly recall for any given distribution u over X, we say
a distribution v over X is o-smooth w.r.t. p if for all measurable sets
A C X, we have v(A) < u(A)/o. A random process vT over X7 is said
to be o-smooth if the conditional marginal v* (- | X*~1) is o-smooth
w.r.t. pu for all ¢ < T, almost surely. For instance, if ¢ = 1, we reduce to
the i.i.d. process case.

Corollary 10.20. Let H C V¥ be a class with finite VC-dimension
VC(H) and |Y| = 2, S”(u) be the class of all o-smoothed processes
w.r.t. p, and K" be the noise kernel as in Theorem 10.12. Then for
any vT € S%(p), if xT ~ w7, then the high probability, minimax risk at
confidence d > 0 is upper bounded by:

VC(H)log(T /o) + log(1/4)
o ()2 )

Proof. By Proposition 8.4, H admits a stochastic sequential cover G at
confidence §/2 > 0 such that:

log |G| < O(VC(H)log(T /o) + log(1/d)).

We now condition on the event of the exact covering. By Theorem 10.12
(second part), the high probability minimax risk at confidence 6/2 is
upper bounded by:

log |G| + log(2/4) VC(H)log(T /o) + log(1/4)
O< (1—n)? >§O< (1—mn)? >

The result now follows by a union bound. O

10.7 Bibliographical Notes

Online learning with noisy labels was first studied in [95], which consid-
ers sequential prediction with binary outcomes corrupted by a Binary
Symmetric Channel (BSC). The BSC can be viewed as a special case of
the noise kernel in Example 10.1 with fized noise parameters 7;. The
more challenging setting with varying noise parameters—corresponding
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to Massart’s noise—was investigated by [35]. Online conditional proba-
bility estimation has been extensively studied; see, for example, [46],
[54], [60], [61], [65], [74]. The approach of leveraging online conditional
density estimation (cf. Theorem 10.1) is conceptually similar to that
of [91], within the context of online decision making. Analogous ideas
of pairwise comparisons have also appeared in the differential privacy
literature—see, e.g., [96]—though only in the batch setting.

The general theoretical framework and results discussed in this
chapter are based on the work of [97].
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