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Abstract

We study agnostic online learning from continuous-time data streams, a setting that
naturally arises in applications such as environmental monitoring, personalized
recommendation, and high-frequency trading. Unlike classical discrete-time mod-
els, learners in this setting must interact with a continually evolving data stream
while making queries and updating models only at sparse, strategically selected
times. We develop a general theoretical framework for learning from both oblivious
and adaptive data streams, which may be noisy and non-stationary. For oblivious
streams, we present a black-box reduction to classical online learning that yields a
regret bound of T · R(S)/S for any class with discrete-time regret R(S), where
T is the time horizon and S is the query budget. For adaptive streams, which
can evolve in response to learner actions, we design a dynamic query strategy in
conjunction with a novel importance weighting scheme that enables unbiased loss
estimation. In particular, for hypothesis classH with a finite Littlestone dimension,
we establish a tight regret bound of Θ̃(T ·

√
Ldim(H)/S) that holds in both settings.

Our results provide the first quantitative characterization of agnostic learning in
continuous-time online environments with limited interaction.

1 Introduction

Online learning from continuous data streams is encountered in many real-world applications, such
as environmental sensor networks that sample air quality, recommendation engines that adapt as users
click in real time, and high-frequency trading platforms that react rapidly to market transients. Unlike
batch or discrete-time online settings, the underlying system state evolves continually. Consequently,
learning algorithms must query the system to construct models of the data streams, which may be
noisy and non-stationary. Moreover, due to the high cost of retraining online models, both the query
and update budgets are often limited.

Given the widespread applications of continuous-time online learning, our objective is to establish
its foundations from a learning-theoretic perspective. We are interested in questions such as: How
frequently must a learner sample from a continuous stream to maintain accurate predictions? What
happens when the stream itself adapts in response to past queries: Can effective learning still take
place? And how can we provide strong performance guarantees when no perfect predictor exists?

Our approach to this problem is related to the update-and-deploy framework introduced recently
by Devulapalli and Hanneke [7]. Here, the query strategy and the learning algorithm are treated as
distinct entities: the query strategy selects continuous-time query points without access to labels,
while the learning algorithm updates its parameters only at these discrete query times. During each
interval between queries, the predictor remains fixed and processes all incoming data. At each query
instant, the learning algorithm observes the label, updates the predictor, and redeploys it for the next
interval. We note that the theory of continuous-time online learning developed by Devulapalli and
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Hanneke [7] primarily addresses the realizable setting, in which the data stream is assumed to be
generated by a function in a given hypothesis class H. However, this assumption may not hold in
real-world scenarios, where data is often noisy or misspecified.

In this paper, we tackle the more challenging agnostic setting [1], where the data stream may be
selected arbitrarily and may not align with any function in the hypothesis class. Without assuming the
existence of a perfectly consistent hypothesis, our primary objective becomes one of minimizing an
appropriate notion of regret. Regret measures how much more loss the learner incurs compared to the
best fixed predictor from a given hypothesis in hindsight. However, we should emphasize that it is not
clear a priori how regret should be defined in the continuous-time setting. We introduce two notions
of regret, depending on how the data stream is generated, namely, oblivious and adaptive regrets.

Oblivious Data Streams. An oblivious data stream in our context is a continuous stream that is
arbitrarily chosen in advance before the learning process begins and does not depend on the learner’s
actions or query times. In this model, regret can be simply defined as the gap between the expected
loss incurred by the algorithm when processing the data stream and the minimal expected loss
incurred by the best fixed predictor in the hypothesis class on the same data stream.

Adaptive Data Streams. A more challenging setting arises when the data stream is adaptive; that
is, it may change in response to the learner’s past queries and deployed predictors. This can occur,
for example, when a query made by the learner perturbs the environment. One can model an adaptive
data stream as being controlled by an adversary: initially, the adversary commits to a realization of a
continuous data stream, but after each query, it may select a new process based on the observed query
times and predictor history. In this case, we define regret as the difference between the expected loss
of the algorithm and the expected loss of the best fixed predictor in the hypothesis class, evaluated on
the same data stream generated jointly by the adversary and the learning algorithm. This notion is
analogous to regret formulations used in the bandit learning literature [4].

1.1 Main Contributions

We develop generic algorithmic frameworks for agnostic continuous-time online learning under both
oblivious and adaptive data streams with optimal regret guarantees. We establish fundamental upper
and lower bounds on regret that reveal precise trade-offs between query budget S, time horizon
T , and complexity of the hypothesis class H. Together, these results establish a comprehensive
theoretical foundation for agnostic continuous-time online learning.

Our main results can be summarized as follows:

1. We show that the regret under oblivious data stream can be reduced to classical discrete-time
online regret via a black-box reduction. This is achieved by partitioning the time horizon into S
epochs, each of length ∆ := T/S, and sampling one query uniformly within each epoch. Our main
technical insight is that the loss incurred by any predictor on the queried example forms an unbiased
estimate of the continuous-time risk over the entire epoch. We prove that for any hypothesis class
admitting a classical discrete-time regret bound R(S), the corresponding continuous-time regret
scales as T ·R(S)/S; see Theorem 1.

2. For adaptive processes, we show in Proposition 1 that a simple uniform query strategy with fixed
epochs does not admit sublinear regret. This was resolved by employing a query strategy that
samples from dynamic (random) epochs as in [7]. However, such a strategy no longer yields
an unbiased estimate due to the complex randomness of epoch boundaries. Our main technical
innovation is a novel weighting scheme that transforms the queried loss into an unbiased estimate,
even in the presence of random epochs—an idea we believe is of independent interest. More
importantly, our weighting scheme is realized algorithmically (cf. Algorithm 3), not just in the
analysis. Equipped with these techniques, we show in Theorem 2 that adaptive continuous-time
regret for any classH of finite Littlestone dimension scales as Õ(T ·

√
Ldim(H)/S).

3. Finally, we provide lower bounds that match our upper bounds. For finite Littlestone dimensional
classH, we show in Theorem 3 that a lower bound of Ω(T ·

√
Ldim(H)/S) is necessary for any

algorithm, under both oblivious and adaptive data streams. This matches our upper bounds in all
relevant parameters: T , S, and Ldim(H). Notably, it demonstrates that even though the optimal
query strategies differ between oblivious and adaptive settings, their regrets are of the same order.
Our proof follows from novel constructions of hard data processes; see Appendix D.
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1.2 Related Work

Online learning in discrete time has been extensively studied in both the realizable and agnostic
settings [12, 4, 16]. A foundational characterization of agnostic learnability for binary-valued
hypothesis classes was established by Ben-David et al. [1] via the Littlestone dimension and was
subsequently extended to multiclass and real-valued prediction settings [14, 5, 8]. The study of query-
efficient and selective sampling models—where the learner decides when to observe labels—has
provided deep insights into label complexity and active learning trade-offs in both online and batch
frameworks [2, 6, 9]. Devulapalli and Hanneke [7] recently initiated the study of an update-and-deploy
framework, where predictions are made continuously while updates occur at discrete time points.
This setting departs from classical models by requiring the learner to query both features and labels in
a continuous-time environment. Although their work establishes a theory for the realizable setting, the
agnostic case, particularly its fundamental limits—remains largely unexplored. We address this gap
by providing the first quantitative characterization of regret in the continuous-time agnostic setting.
Our approach introduces several technical innovations, including importance-weighted unbiased
loss estimators and the novel applications of Khintchine-type inequalities to derive sharp lower
bounds in both the oblivious and adaptive settings. Additionally, our setting is related to problems in
nonparametric filtering and online learning with delayed or partial feedback [13, 4].

2 Problem Setup

LetX be an instance space, Y be a label space, andH ⊂ YX be a hypothesis class. A continuous-time
data process over X × Y is defined as a collection of joint random variables Z := {(Xt, Yt)}t∈R,
where Zt := (Xt, Yt) ∈ X × Y denotes the random sample at time t ∈ R.

We consider the update-and-deploy framework from Devulapalli and Hanneke [7] as described in
Protocol 1. The learner begins with an initial predictor ĥ0 ∈ YX and selects the first query time
t1 ∈ R+. The predictor ĥ0 is used to make predictions on instances Xt for all t < t1, without
revealing the corresponding sample (Xt, Yt) to the learner. At query time t1, the environment (or
Nature) reveals the labeled example (Xt1 , Yt1), after which the learner updates the predictor to ĥ1 and
selects the next query time t2. This process repeats until a fixed query budget S ∈ N+ is exhausted.

Protocol 1 Continuous-Time Online Learning Protocol

1: Select initial predictor ĥ0 ∈ YX and initial query time t1 ∈ R+

2: for s = 1, . . . , S do
3: Use ĥs−1 to make predictions on Xt for t ∈ [ts−1, ts)
4: Query and observe Zts := (Xts , Yts) at time ts
5: Choose predictor ĥs ∈ YX and the next query time ts+1 based on history {Zt1 , . . . , Zts}
6: end for

Note that the selection of ĥs and ts can be randomized 2, and that the predictor ĥs need not belong
to H (i.e., is improper). For clarity of exposition, we also assume that the learning process occurs
within a finite time horizon T ∈ R+. In this case, we also assume t0 = 0 and tS = T by convention.

Let A be any continuous-time online learning algorithm, and let Z := {(Xt, Yt)}t∈R denote any data
process that may depend on A. We define the risk of the algorithm as:

riskT (A,Z) := E

[
S∑

s=1

∫ ts

ts−1

ℓ
(
ĥs−1(Xt), Yt

)
dt

]
, (1)

where ℓ : Y × Y → [0, 1] is a bounded loss function, and the expectation is taken over the
randomness in Z and the internal randomness of A. For simplicity, we assume that the function
f(t) := ℓ(ĥs−1(Xt), Yt) is measurable for any sample path. Similarly, for any (static) hypothesis
h ∈ H, we define the riskT (h,Z) by replacing the ĥs−1 with h in (1).

2One may also assume that the predictor ĥs itself is randomized.
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For any algorithm A, hypothesis classH and data process Z, regret is defined as:
regretT (A,H,Z) := riskT (A,Z)− inf

h∈H
riskT (h,Z). (2)

Note that our definition of regret in (2) depends on the data process. To remove this dependency and
to quantify the impact of the structural properties of H on regret, we introduce the following two
notions of minimax regret for the worst-case data processes.

Oblivious Minimax Regret. In this setting, we assume that the data process Z is selected arbitrarily
but independent (i.e., oblivious) of the internal randomness of A. The oblivious minimax regret for a
hypothesis classH is then defined as:

regretoT (H, S) := inf
A

sup
Z

regretT (A,H,Z), (3)

where the infimum is taken over all learning algorithms A that make at most S queries and the
supremum is taken over all data-generating processes Z that may depend on the algorithm’s structure
but not on its internal random choices (such as the realized ĥs’s and ts’s).

Adaptive Minimax Regret. A more challenging setting arises when the data process Z can adapt
to the learner’s behavior. In this case, Nature may select an initial process Z(1) and, after observing
the s’th query at time ts, switch to a new process Z(s+1) based on the full interaction history up to
that point (i.e., the realized {(ti, ĥi)}i≤s but not the next query time ts+1).

Let A be a learning algorithm and Φ be an adaptive strategy for Nature, we define the adaptive risk

riskaT (A,Φ) := E

[
S∑

s=1

∫ ts

ts−1

ℓ(ĥs−1(X
(s)
t ), Y

(s)
t )dt

]
, (4)

where the expectation is over the joint distribution of {ĥs−1}s∈[S], {ts}s∈[S] and {Z(s)}s∈[S] induced
by A and Φ, and we denote Z(s) := {(X(s)

t , Y
(s)
t )}t∈R. We can also define the adaptive risk for any

(static) hypothesis h ∈ H by replacing the ĥs−1 with h in (4), denoted by: riskaT (h,A,Φ).
Then, the adaptive minimax regret is defined as:

regretaT (H, S) := inf
A

sup
Φ

[
riskaT (A,Φ)− inf

h∈H
riskaT (h,A,Φ)

]
, (5)

where A runs over all algorithms with ≤ S queries and Φ runs over all adaptive strategies for Nature.

3 Main Results

We start with a simple query strategy shown in Algorithm 1 for oblivious data processes. The core
idea is to partition the time horizon into S epochs, each of length ∆ := T/S. Within each epoch, we
select a query time uniformly at random and observe a sample. These queried samples are then fed
into a classical online learning algorithm, which produces the predictor ĥs used for the next epoch. 3.

The rationale behind this approach is that since the sample is uniformly queried from an interval, the
loss incurred by ĥs−1 on the queried sample is an unbiased estimate of the actual (continuous) risk
for that interval. Therefore, any regret guarantee achieved by the expert algorithm B on the queried
samples can be translated to the regret of our continuous-time online algorithm (Algorithm 1) in a
black-box fashion. This observation is formally stated in the following lemma:

Lemma 1. Let Z be any (oblivious) data process, and {(ts, ĥs−1, Zts)}s∈[S] be the (random)
selections generated by Algorithm 1. Then, for any s ∈ [S] and any (random) predictor hs−1 ∈ YX

that depends only on {(ti, ĥi−1, Zti)}i∈[s−1], we have:

E [ℓ(hs−1(Xts), Yts)] =
1

∆
E

[∫ s∆

(s−1)∆

ℓ(hs−1(Xt), Yt)dt

]
,

3Note that Algorithm 1 slightly deviates from the general protocol described in Protocol 1 by delaying the
update of ĥs until the start of the next epoch (not at query time). This can be fitted by adding "dummy" queries
at the time points {s∆ : s ∈ [S]}, and will only increase the query budget by a factor of 2.
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Algorithm 1 Uniform Random Query with Fixed Epochs

1: Partition the time horizon into blocks of length ∆ := T/S and select ĥ0 arbitrarily
2: for s = 1, 2, . . . , S do
3: Deploy predictor ĥs−1 for the entire epoch [(s− 1)∆, s∆)
4: Sample ts uniformly from [(s− 1)∆, s∆).
5: Query and observe Zts := (Xts , Yts) at step ts.
6: Use any expert algorithm B to produce ĥs with data {Zt1 , · · · , Zts}
7: end for

where the expectation is over all randomness involved.

Proof. By the law of total probability, we have

E [ℓ(hs−1(Xts), Yts)] = E
[
Ets

[
ℓ(hs−1(Xts), Yts) | {(ti, ĥi−1)}i∈[s−1],Z

]]
= E

[
1

∆

∫ s∆

(s−1)∆

ℓ(hs−1(Xt), Yt)dt

]
,

where we used the fact that conditioning on {(ti, ĥi−1)}i∈[s−1] and Z, the index ts is independent of
hs−1 and is uniform over [(s− 1)∆, s∆) (we then express the expectation on ts as an integral).

Note that Lemma 1 holds for any predictor hs−1 that satisfies the stated condition (including a static
predictor), not just for the produced predictor ĥs−1. We now introduce the classic regret as:

˜regretS(B,H) := sup
Zt1

,··· ,ZtS

{
S∑

s=1

E
[
ℓ(ĥs−1(Xts), Yts)

]
− inf

h∈H

S∑
s=1

ℓ(h(Xts), Yts)

}
, (6)

where the expectation is over the internal randomness of B that produces ĥs−1.
Theorem 1. LetH be any hypothesis class that admits an expert algorithm B with ˜regretS(B,H) ≤
R(S) for some function R : N→ R. Then, the oblivious minimax regret ofH satisfies

regretoT (H, S) ≤ ∆ ·R(S) =
T ·R(S)

S
.

Moreover, this upper bound is achieved by Algorithm 1 using the expert algorithm B.

Proof. Let Z be any fixed data process, and {ts, ĥs−1, Zts}s∈[S] be the selections made by Algo-
rithm 1 using expert algorithm B. Invoking Lemma 1 and the linearity of expectation, we have

riskT (A,Z)
def
= E

[
S∑

s=1

∫ s∆

(s−1)∆

ℓ
(
ĥs−1(Xt), Yt

)
dt

]
= ∆ · E

[
S−1∑
s=0

ℓ(ĥs−1(Xts), Yts)

]
,

where the expectation is over all randomness involved. Similarly, for any (static) h ∈ H, we have
riskT (h,Z) = ∆ · E

[∑S
s=1 ℓ(h(Xts), Yts)

]
. Therefore,

1

∆
regretT (A,H,Z) = E

[
S∑

s=1

ℓ(ĥs−1(Xts), Yts)

]
− inf

h∈H
E

[
S∑

s=1

ℓ(h(Xts), Yts)

]

≤ E

[
S∑

s=1

ℓ(ĥs−1(Xts), Yts)− inf
h∈H

S∑
s=1

ℓ(h(Xts), Yts)

]
≤ R(S),

where the first inequality follows by inf E ≥ E inf and linearity of expectation. This completes the
proof, and the final identity follows by ∆ := T/S.

Instantiating Theorem 1 to specific hypothesis classes, we have:
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Corollary 1. Let Y = [0, 1] and H ⊂ {0, 1}X be a binary-valued class of Littlestone dimension
Ldim(H). Then, for absolute loss ℓ(y, y′) := |y − y′|, the oblivious minimax regret ofH satisfies

regretoT (H, S) ≤ O

(
T ·
√

Ldim(H) · logS√
S

)
.

Proof. By [1], classH admits an expert algorithm B with classic regret upper bounded by R(S) ≤
O(
√
S logS · Ldim(H)) under the expected misclassification loss. The result then follows from

Theorem 1 by plugging in R(S) and noting that the expected misclassification loss can be interpreted
as the absolute loss [4, Chapter 8].

Observe that Corollary 1 provides the precise trade-off between the query budget S, time horizon T
and the resulting regret. For instance, it shows that if the query budget grows linearly as S = Ω(T ),
then the regret is upper bounded by Õ(

√
T · Ldim(H)). On the other hand, if the budget is sublinear

as Tα for some α < 1, then the regret grows as Õ(T 1−α
2 ·
√
Ldim(H)). We will show in Section 3.2

that this regret is tight w.r.t. all parameters T , S and Ldim(H).
Remark 1. Note that Theorem 1 provides a black-box reduction from any achievable classical
discrete-time online regret to the (oblivious) continuous-time regret. For instance, for real-valued
classH ⊂ [0, 1]X with sequential-fat-shattering dimension of order α−p, we have R(S) ≤ Õ(S

p−1
p )

under absolute loss [14]. This leads to the continuous-time risk: regretoT (H, S) ≤ Õ(T · S−1/p).
Furthermore, Algorithm 1 is computationally efficient, provided that the expert algorithm B is efficient
(such as the oracle-efficient algorithms in [11, 3, 17]).

3.1 Adaptive Minimax Regret

One might observe that the key ingredient in the proof of Lemma 1 is the independence of the query
time ts from the data process Z. This independence allows us to obtain an unbiased estimate of the
continuous-time risk over the epoch [(s− 1)∆, s∆), even if only a single sample is queried and the
process is selected in a completely arbitrary manner.

Unfortunately, this property does not carry over to an adaptively selected data process that may
depend on the query times. This is demonstrated formally in the following proposition.
Proposition 1. For any hypothesis classH ⊂ {0, 1}X that contains two h1, h2 ∈ H and x1,x2 ∈ X
such that h1(x1) = h2(x1) but h1(x2) ̸= h2(x2), we can construct an adaptive process, such that
Algorithm 1 with any B and S incurs regret lower bounded by Ω(T ) under absolute loss.

Proof. Let B be uniformly sampled from {0, 1}. At each epoch s, we set Xt := x1, Yt := h1(x1)
for t ∈ [(s− 1)∆, ts], and switch to Xt := x2, Yt := B for t ∈ (ts, s∆). Note that this data process
depends on the (random) query times ts’s and is realizable w.r.t. H; that is, either h1 or h2 incurs 0
risk. Since the queried example is always (x1, h1(x1)), which is independent of B. Therefore, the
expected risk is lower bounded by the risk of ĥs−1’s on the intervals (ts, s∆) as:

EBE

[
S∑

s=1

1{ĥs−1(x2) ̸= B} · (s∆− ts)

]
= E

[
S∑

s=1

EB [1{ĥs−1(x2) ̸= B}] · (s∆− ts)

]

= E

[
S∑

s=1

1

2
(s∆− ts)

]
=

∆ · S
4

=
T

4
,

where the penultimate identity follows by E[(s∆ − ts)] =
∆
2 . Therefore, there must exist some

B ∈ {0, 1} such that Algorithm 1 incurs T/4 regret for our adaptive process constructed above.

Proposition 1 implies that for any class H ⊂ {0, 1}X with Littlestone dimension at least 2 (which
satisfies the stated condition), Algorithm 1 incurs adaptive regret ≥ T

4 . This effectively rules out
almost all hypothesis classes of interest. Note that the main reason our adaptive process breaks the
arguments in the proof of Theorem 1 is that the loss at the query example ts is no longer an unbiased
estimate of the continuous-time risk over the entire epoch [(s− 1)∆, s∆).
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To address this issue, we employ a query strategy adapted from [7], by sampling the query time ts
uniformly from the dynamic epoch [ts−1, ts−1 +∆), as described in Algorithm 2. However, since
the data process Z(s+1) after the query time ts may change under an adaptive adversary, an analog
of Lemma 1 no longer holds. Our main idea is a novel weighting scheme on the queried losses (see
Algorithm 3), which serves as a substitute unbiased estimator for the continuous-time risks. This is
formalized in Lemma 2 below and constitutes the main technical innovation of this section.

Algorithm 2 Uniform Random Query with Dynamic Epochs

1: Select the initial predictor ĥ0 ∈ YX arbitrarily and sample t1 uniform over [0,∆).
2: for s = 1, 2, . . . , S do
3: Use ĥs−1 to make predictions on Xt for t ∈ [ts−1, ts)

4: Query and observe Z
(s)
ts := (X

(s)
ts , Y

(s)
ts ) at time ts

5: Use Weighted-EWA (Algorithm 3) to produce ĥs with data {(ti, Z(i)
ti )}i≤s

6: Sample ts+1 uniformly from the dynamic epoch [ts, ts +∆)
7: end for

Algorithm 3 Weighted-EWA

1: LetH := {h1, · · · , hk} be finite of size K

2: Set initial weight w0 = (1, · · · , 1) ∈ [0, 1]K and the learning rate η =
√

logK
S

3: for s = 1, 2, . . . , S do
4: Retrieve data (ts, Z

(s)
ts )

5: For all k ∈ [K], update weight

ws[k] = ws−1[k] · e−η·
(
1− ts−ts−1

∆

)
·ℓ(hk(X

(s)
ts

),Y
(s)
ts

)

6: Produce predictor

ĥs =

∑K
k=1 w

s[k] · hk∑K
k=1 w

s[k]

7: end for

Lemma 2. Let Φ be any adaptive strategy and {ĥs−1, ts,Z(s)}s∈[S] be the realizations generated by
interactions between Algorithm 2 and Φ (see Section 2). Then, for any s ∈ [S] and any (random)
predictor hs−1 ∈ YX that depends only on {ĥi−1, ti,Z

(i)}i≤s−1, we have:

E
[(

1− ts − ts−1

∆

)
· ℓ(hs−1(X

(s)
ts ), Y

(s)
ts )

]
=

1

∆
E

[∫ ts

ts−1

ℓ(hs−1(X
(s)
t ), Y

(s)
t )dt

]
,

where the expectation is over all randomness involved.

Proof. Conditioning on any realizations of {ĥi−1, ti,Z
(i)}i≤s−1, hs−1 and Z(s), the conditional

distribution of ts remains uniform over [ts−1, ts−1 +∆). Denote f(t) := ℓ(hs−1(X
(s)
t ), Y

(s)
t ) and

τ = ts − ts−1 for notation convenience. We have

1

∆
Ets

[∫ ts

ts−1

ℓ(hs−1(X
(s)
t ), Y

(s)
t )dt

]
=

1

∆2

∫ ∆

0

(∫ ts−1+τ

ts−1

f(t)dt

)
dτ

(⋆)
=

1

∆2

∫ ts−1+∆

ts−1

(∫ ∆

t−ts−1

1 · f(t)dτ

)
dt

=
1

∆2

∫ ts−1+∆

ts−1

(∆ + ts−1 − t) · f(t)dt

(⋆⋆)
=

1

∆
Ets [(∆− τ) · f(ts)] = Ets

[(
1− τ

∆

)
· f(ts)

]
,
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where the key identity (⋆) follows by exchanging the order of integrations, and (⋆⋆) follows by
setting t := ts since ts is distributed uniformly over [ts−1, ts−1 +∆). The lemma then follows by
taking the expectation over the remaining randomness and by the law of total probability.

Intuitively, Lemma 2 shows that the continuous-time risk of predictor hs−1 over the (random) interval
[ts−1, ts) can be estimated by a weighted loss of hs−1 at the queried sample Z

(s)
ts . In particular, the

weighting factor depends on the query times and discounts those that are far from the previous query
time. It is also instructive to observe that the expected loss at the query sample without weighting
always overestimates the continuous-time risk.

The following lemma provides a useful bound on the discrete-time (weighted) regret incurred by
Algorithm 3 at the query samples. The proof follows from the same regret analysis of the classical
EWA algorithm [4, Theorem 2.2] and is deferred to Appendix B for readability.

Lemma 3. Let H ⊂ [0, 1]X be any finite class and ℓ : [0, 1] × [0, 1] → [0, 1] be any loss that is
convex in the first argument. Then, Algorithm 3 yields the following regret:

sup
{(ts,Z(s)

ts
)}s∈[S]

{
S∑

s=1

αs · ℓ(ĥs−1(X
(s)
ts ), Y

(s)
ts )− inf

h∈H

S∑
s=1

αs · ℓ(h(X(s)
ts ), Y

(s)
ts )

}
≤ O(

√
S log |H|),

where αs :=
(
1− ts−ts−1

∆

)
∈ [0, 1] and {(ts, Z(s)

ts )}s∈[S] run over all possible selections.

Note that the regret guarantee of Lemma 3 holds for any selection of the data {(ts, Z(s)
ts )}s∈[S],

including adaptive strategies. It remains valid even when the αs’s take different forms.

We are now ready to state our main technical result for this section.

Lemma 4. Let H ⊂ [0, 1]X be any finite class and ℓ : [0, 1] × [0, 1] → [0, 1] be any loss that is
convex in the first argument. Then, the adaptive minimax regret of H satisfies: regretaT (H, S) ≤
O(T ·

√
(log |H|)/S). Moreover, this is achieved by Algorithm 2 with ∆ := 4T

S .

Proof. The proof follows the same argument as Theorem 1, by replacing Lemma 1 with Lemma 2,
and invoking Lemma 3 to bound the weighted regret on the queried samples. The only remaining
step is to select an appropriate ∆ that ensures tS ≥ T , since the epochs [ts−1, ts) are no longer fixed.
To this end, by the multiplicative Chernoff bound [18, Corollary 2.18], we have:

Pr

[
tS =

S∑
s=1

(ts − ts−1) < T

]
≤ exp

(
−S

4

(
1− 2T

S∆

)2
)
.

Setting ∆ := 4T/S, the error probability becomes exp(−S/16). Therefore, the expected risk
contributed by the “bad” event {tS < T} is at most T · exp(−S/16), which is negligible.

Using a covering argument similar to that in [1, Lemma 12], we extend Lemma 4 to hypothesis
classes with finite Littlestone dimension below. The full proof is deferred to Appendix C.

Theorem 2. LetH ⊂ {0, 1}X be a binary-valued class of finite Littlestone dimension and ℓ be the
absolute loss ℓ(y, y′) = |y − y′|. Then, the adaptive minimax regret forH satisfies:

regretaT (H, S) ≤ O

(
T ·
√

Ldim(H) · logS√
S

)
.

We remark that the use of the EWA algorithm in the proof of Lemma 4 is not essential. In fact, any
algorithm that achieves low weighted regret, as in Lemma 3, enables a black-box reduction. This
includes algorithms from the online convex optimization literature [10], such as online gradient
descent and the Follow-the-Regularized-Leader (FTRL) family of methods.
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3.2 Lower Bounds

In the preceding sections, we presented algorithms for both oblivious and adaptive data streams
that achieve sublinear regret rates. We now show that no algorithm with a bounded query budget
can attain a better rate. Specifically, we establish matching lower bounds in both settings, thereby
demonstrating that our regret guarantees are optimal.
Theorem 3. Let Y = [0, 1],H ⊂ {0, 1}X be any class with Littlestone dimension Ldim(H) and ℓ be
the absolute loss ℓ(y, y′) = |y − y′|. Then, for any algorithm A with query budget S, there exists an
oblivious data process Z such that:

riskoT (A,Z)− inf
h∈H

riskoT (h,Z) ≥ Ω

(
T
√

Ldim(H)√
S

)
.

Note that the lower bound in Theorem 3 holds for oblivious data processes, which automatically
applies to adaptive data processes. This implies that both upper bounds in Corollary 1 and Theorem 2
are tight (up to a logS factor) w.r.t. all parameters: T , S, and Ldim(H).
To proceed, we introduce the following key inequality (see [4, Lemma A.9]).
Lemma 5 (Khinchine’s Inequality). Let ϵ1, · · · , ϵn be uniform over {−1,+1}n and a1, · · · , an be
real numbers. Then 1√

2

(∑n
i=1 a

2
i

)1/2 ≤ E |
∑n

i=1 aiϵi| ≤
(∑n

i=1 a
2
i

)1/2
.

We present here a simplified proof under adaptive data processes and assume that the query strategy
is data-independent. The stronger result for oblivious data processes and general query strategies
follows from a more intricate construction; the complete proof is deferred to Appendix D.

Proof of Theorem 3 (weaker version). We first consider the case whereH := {h0, h1} with h0(x) =
0 and h1(x) = 1 for some fixed x. Let {b1, · · · , bS} ∼ Unif({0, 1}S), we construct an adaptive data
process Φ(b) as follows. We set the initial data process Z(1)

t := (x, b1) for all t ∈ R. After the s

query, we switch to another process with Z
(s+1)
t := (x, bs+1) for all t ∈ R. Denote Ts := ts − ts−1

as the (random) epoch length between the s and s− 1 queries. We have

Eb

[
riskaT (A,Φ(b))

]
= EbE

[
S∑

s=1

∫ ts

ts−1

ℓ(ĥs−1(X
(s)
t ), Y

(s)
t )dt

]

= E

[
S∑

s=1

∫ ts

ts−1

Ebs [|ĥs−1(x)− bs|]

]
= E

[
S∑

s=1

∫ ts

ts−1

1

2

]
=

T

2

where we used the independence between bs and {ĥs−1, ts}. For comparator loss, we have:

Eb

[
inf
h∈H

E

[
S∑

s=1

∫ ts

ts−1

|h(x)− bs|

]]
= Eb

[
min

y∈{0,1}

S∑
s=1

E[Ts] · |y − bs|

]
(a)
=

T

2
+

1

2
Eϵ

[
min

{
S∑

s=1

asϵs,−
S∑

s=1

asϵs

}]

=
T

2
− 1

2
Eϵ

[∣∣∣∣∣
S∑

s=1

asϵs

∣∣∣∣∣
]

(b)

≤ T

2
− 1

2
√
2

√√√√ S∑
s=1

a2s
(c)

≤ T

2
− T

2
√
2S

, (7)

where (a) follows by changing of variables ϵs := 1−bs
2 and setting as := E[Ts]; (b) follows by

Lemma 5 (lower bound); (c) follows by Cauchy–Schwarz and the fact that a1 + · · ·+ aS = T . By
the probabilistic method, there must exist some Φ(b) that attains an expected regret of Ω(T/

√
S).

For general classH with Littlestone dimension d := Ldim(H), we follow an approach similar to that
of [1, Lemma 14]. We divide the query budget into d phases, each with S/d queries. The adversarial
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strategy proceeds as follows: let τ be a Littlestone tree of H of depth d. We begin with x1 as the
root of τ and assign the labels using the construction for the simplified case above. Once the learner
uses all S/d queries, we choose the next input x2 as the child of x1 in τ whose outgoing edge label
minimizes the comparator loss in (7). This process continues until all query budget is exhausted. Let
Tr be the length of the time-interval for the r’th phase, the total regret is lower bounded by:

d∑
r=1

Tr

2
√
2S/d

≥ Ω

(
T√
S/d

)
= Ω

(
T
√
d√
S

)
.

Here, we used the fact that there exists h ∈ H whose predictions attain (7) for all phases.

Remark 2. Note that step (b) in Eq. (7) implicitly uses the data-independence assumption of the
queries (i.e., the as is independent of ϵs’s). This assumption is removed in our full proof (Appendix D)
by constructing an oblivious data process. Furthermore, although our simplified proof here is
reminiscent of the classic arguments in [1], its adaptation to the continuous-time setting and the
phase-based scheduling constitutes a substantive theoretical advancement.

4 Discussion

Our work focuses primarily on the worst-case setting, where the data process is arbitrary and
no distributional assumptions are made. In this adversarial regime, we show that our algorithms
achieve optimal regrets, tightly matching lower bounds in both the oblivious and adaptive settings.
These results provide a precise characterization of the inherent difficulty of learning from agnostic
continuous data streams with limited interaction. However, it is important to note that for specific data
processes, improved strategies may be possible by leveraging structural or statistical assumptions. For
instance, consider the case where the data process is i.i.d. and is realizable w.r.t. a finite hypothesis
class. A strategy that queries at uniformly spaced intervals of length ∆ := T/S and updates the
predictor using empirical risk minimization (ERM) at each query point incurs total risk of order:

S∑
s=1

∆

s
≈ T logS

S
,

since the risk of ERM with s i.i.d. samples is O(1/s) [15]. In contrast, a naive strategy that queries
S examples at the very beginning and freezes the predictor for the remainder of the time horizon
incurs a total risk of order T/S. Therefore, designing optimal query strategies tailored to specific
data-generating processes remains an intriguing direction for future research.

Another modeling choice that may raise concern is our use of integration over time to define risk,
which may appear idealized in real-world settings, where predictions are inherently discrete. We
emphasize that the integral formulation is primarily a mathematical abstraction used to simplify
exposition and analysis. An analogous discrete-time version, where risk is computed as the sum of
per-step losses, leads to the same bounds under mild assumptions. In that case, care must be taken
to ensure that the number of queries does not exceed the total number of time steps, but all of our
arguments and regret guarantees extend naturally with minor modifications.

Acknowledgments. This work is partially supported by the NSF Center for Science of Information
(CSoI) Grant CCF-0939370, and also by NSF Grants CCF-2006440 and and CCF-2211423.
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A Empirical Validation

We complement our theoretical results with controlled simulations to illustrate how the proposed
update rules behave under various data processes. We implement three algorithms corresponding to
our theoretical constructions:

1. Uniform Epoch: updates are performed at fixed, evenly spaced intervals.
2. Dynamic Epoch: update times are chosen adaptively based on past intervals.
3. Dynamic + Reweighting: same as Dynamic, but each update is weighted by

αs = 1− ts − ts−1

∆
,

to correct post-epoch bias.

All algorithms use the Exponential Weights Algorithm (EWA) with absolute loss over a class of
threshold experts,

H = {hτ (x) = 1{x ≥ τ} : τ ∈ [0, 1] }.
We instantiate K = 201 uniformly spaced thresholds τj = j

K+1 , and simulate over N = 30,000
discrete time steps (corresponding to a continuous horizon of T = 1) to approximate the integration
in our theoretical formulation. The number of model updates is varied as

S ∈ {25, 40, 64, 80, 100, 128, 160, 200, 256, 320, 400, 512, 640, 800, 1024, 1280}.

Each configuration is averaged over five independent random seeds to reduce stochastic variance.

Data processes. In all environments, the features are generated independently as xt ∼ Unif[0, 1].
The environments differ only in how the labels yt are generated as (possibly adversarial) functions of
xt and the query times {ts}. We consider one stochastic and two adversarial constructions:

• Oblivious Drift: Let t 7→ θ(t) = 0.5+ 0.3 sin(4πt/T ) denote a drifting threshold completing two
full cycles over the horizon [0, T ]. At each discrete tick t, the label is assigned as

yt = 1{xt ≥ θ(t)},

followed by 5% independent label flips (yt ← 1 − yt with probability 0.05). This produces a
smooth periodic drift that is entirely oblivious to the learner’s updates.

• Adversarial A1 (Bit-after-Query): Labels alternate over time between two regimes, with switches
exactly at the learner’s query times. One regime uses the informative threshold yt = 1{xt ≥ 0.5};
the other fixes labels to a constant random bit Bs ∼ Bernoulli(1/2).

• Adversarial A2 (Post-Query Shift): Labels alternate over time between two threshold regimes,
with switches exactly at the learner’s query times. One regime follows the balanced rule yt =
1{xt ≥ 0.5}; the other adopts a skewed rule yt = 1{xt ≥ 0.8}, creating abrupt post-query shifts
that make the data imbalanced and harder to predict.

• Adversarial A3 (Refresh-Random-Bits): After each query, the label switches to a freshly sampled
random bit Bs ∼ Bernoulli(1/2), which is held fixed until the next query.

Evaluation. We measure the mean regret

R(S) :=
1

N

N∑
t=1

|ŷt − yt| −min
j

1

N

N∑
t=1

|hτj (xt)− yt|,

and report mean±std across five seeds. For visual reference, we also fit the curve C/
√
S in log-space.

Results. Figure 1 plots the average regret versus S (log–log scale), together with a fitted C/
√
S

reference line. Across all settings, the regret decays approximately as O(1/
√
S), consistent with our

theoretical prediction. Moreover, the deviations around the mean are of small order, indicating that
the behavior holds not only in expectation but is also robust across runs.

• In the oblivious case, all three algorithms achieve the expected scaling, differing only by constants.
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(a) Oblivious drift (b) Adversarial A1: bit-after-query

(c) Adversarial A2: post-query shift (d) Adversarial A3: refresh random-bits
Figure 1: Regret scaling versus number of updates S (log-log scale) under different query strategy and data
processes. The dashed red line shows the fitted C/

√
S reference.

• Under A1 and A2, the dynamic schedule outperforms uniform updates, confirming the benefit of
adaptive query placement.

• Under A3, the dynamic+reweighting strategy outperforms the unweighted dynamic variant, demon-
strating the effectiveness of reweighting. Nevertheless, the uniform schedule also attains small
regret, which we attribute to the simplicity of our threshold-expert class.

B Proof of Lemma 3

Denote ℓs(·, ·) := αs · ℓ(·, ·) and K := |H| for notation convenience. Let W s =
∑K

k=1 w
s[k] be the

potential. We have:

log
W s

W s−1
= log

K∑
k=1

ws−1[k]

W s−1
e−η·ℓs(hk(X

(s)
ts

),Y
(s)
ts

)

≤ −η
K∑

k=1

ws−1[k]

W s−1
· ℓs(hk(X

(s)
ts ), Yts) +

η2

8

≤ −η · ℓs

(
K∑

k=1

ws−1[k]

W s−1
· hk(X

(s)
ts ), Y

(s)
ts

)
+

η2

8

= −ηℓs(ĥs−1(X
(s)
ts ), Y

(s)
ts ) +

η2

8
,

where the first inequality follows by Hoeffding’s lemma [4, Lemma A.1] and the fact that αs ∈ [0, 1],
the second inequality follows by Jensen’s inequality and convexity of ℓs, and the last identity follows
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by the definition of ĥs−1 (see Algorithm 3). Summing from s = 1 to S, we have:

log
WS

W 1
≤ −η

S∑
s=1

ℓs(ĥs−1(X
(s)
ts ), Y

(s)
ts ) +

η2T

8
.

The lemma follows from the fact that:

logWS ≥ −η inf
k∈[K]

S∑
s=1

ℓs(hk(X
(s)
ts ), Y

(s)
ts ), logW 1 = logK,

and setting η =
√
(logK)/S.

Remark 3. Note that the main difference compared to classical regret analysis of the EWA algo-
rithm [4, Theorem 2.2] is that the losses ℓs at different time steps s may vary.

C Proof of Theorem 2

By [1, Lemma 12], the classH admits a finite expert class G ⊂ X ∗ → {0, 1} such that for any h ∈ H
and data {Z(s)

s := (X
(s)
ts , Y

(s)
ts )}s∈[S], there exists g ∈ G satisfying:

∀s ∈ [S], h(X
(s)
ts ) = g({X(i)

ti }i≤s−1, X
(s)
ts ).

This implies that, when running Algorithm 3 over G, the incurred (weighted) regret against H is
always upper bounded by the regret against G. Moreover, by [1], we have:

log |G| ≤ O (Ldim(H) · logS) .
Invoking Lemma 3 on expert class G, the (weighted) regret forH on the queried examples grows as:

O(
√

S log |G|) ≤ O(
√

S logS · Ldim(H))
The result then follows from the same arguments as in Lemma 4.

D Proof of Theorem 3

This appendix presents the complete proof of Theorem 3. Before showing the formal proof, we
distinguish between the following two settings for query strategies:

• Oblivious Query Strategy: A query strategy that is independent of the data;
• Adaptive Query Strategy: A query strategy that depends on the data.

Similarly, we distinguish between the following two settings for Nature:

• Oblivious Nature: An adversarial environment where the data-generating process is chosen
independently of the learner’s actions;

• Adaptive Nature: An adversarial environment where the data-generating process is chosen
dependently on the learner’s actions.

This classification yields four lower-bound regimes—(O-O), (O-A), (A-O), and (A-A)—where the
first letter specifies the query strategy and the second the behavior of Nature. Formally, a label (X-Y)
asserts that for every query strategy of type X, there exists a data-generation process of type Y that
achieves the stated lower bound.

The following proposition is straightforward:
Proposition 2. The following implications hold among the different types of lower bounds:

(A-O)⇒ {(O-O), (O-A), (A-A)}

Proof. The proof follows from the facts that (A-X)⇒ (O-X) and (X-O)⇒ (X-A) for all X ∈ {O,A}.
The first implication holds because a lower bound that applies to all Adaptive query strategies also
applies to all Oblivious strategies under the same type X of data process. The second implication
holds because an Oblivious Nature is a special case of an Adaptive Nature.
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Proposition 2 essentially states that if a lower bound holds for any adaptive query strategy with an
oblivious data process, then it is the strongest, as it also holds in the other three settings. Observe that
the lower bounds we established in the proof of Section 3.2 can be classified as type (O-A), which is
the weakest type among our classification above.

We now present below the complete proof of Theorem 3 with the strongest type (A-O). For the
reader’s convenience, we restate the theorem below:
Theorem 4. LetH ⊂ {0, 1}X be a binary-valued class of finite Littlestone dimension. Then, for any
learning algorithm A with adaptive query strategy and a query budget S, there exists an oblivious
data process Z such that:

riskoT (A,Z)− inf
h∈H

riskoT (h,Z) ≥ Ω

(
T ·
√
Ldim(H)√
S

)
.

The proof of Theorem 4 relies on several technical lemmas, as follows.

Lemma 6. Let B1, . . . , Bm
i.i.d.∼ Bernoulli

(
1
2

)
. Choose indices I1, . . . , Ik independently and uni-

formly from {1, . . . ,m} (with replacement) and set Yt := BIt for t = 1, . . . , k. Let J be uniformly
sampled from {1, . . . ,m}, independently of all previous choices. Let S ⊆ {I1, . . . , Ik} be the set of
all distinct sampled indices and denote k̃ = |S|. Define

Ȳdistinct :=
1

k̃

∑
j∈S

Bj =
1

k̃

∑
j∈S

Yt(j),

where for each j ∈ S, t(j) is any index with It(j) = j. Then

E[BJ |Y1, . . . , Yk] =
1

2
+

k̃

m

(
Ȳdistinct − 1

2

)
.

Proof. Condition on (Y1, . . . , Yk). For each j ∈ S, Bj is revealed exactly as Yt(j), hence E[Bj |
Y1, . . . , Yk] = Yt(j). For j /∈ S, Bj remains independent Bernoulli( 12 ), so E[Bj | Y1, . . . , Yk] =

1
2 .

Averaging over the uniform J ,

E[BJ | Y1, . . . , Yk] =
1

m

m∑
j=1

E[Bj | Y1, . . . , Yk] =
1

m

∑
j∈S

Bj +
∑
j /∈S

1

2

 .

Simplifying,
1

m

(
k̃ Ȳdistinct + (m− k̃) · 1

2

)
=

1

2
+

k̃

m

(
Ȳdistinct − 1

2

)
,

as claimed.

Lemma 7. Let Φ : {0, 1}k → [0, 1] be any (possibly random) predictor. Then, with the notation as
in Lemma 6, we have:

E [|Φ(Y1, · · · , Yk)−BJ | | Y1, · · · , Yk] ≥
1

2
−

∣∣∣∣∣ k̃m
(
Ȳdistinct −

1

2

)∣∣∣∣∣ .
Proof. Condition on Y1, · · · , Yk, we denote p := E [BJ | Y1, · · · , Yk]. Then, for any given b ∈ [0, 1],
we have

E [|b−BJ | | Y1, · · · , Yk] = (1− p) · b+ p · (1− b)

≥ min{p, 1− p}

= min

{
1

2
+

k̃

m

(
Ȳdistinct −

1

2

)
,
1

2
− k̃

m

(
Ȳdistinct −

1

2

)}

=
1

2
−

∣∣∣∣∣ k̃m
(
Ȳdistinct −

1

2

)∣∣∣∣∣ ,
where the second identity follows from Lemma 6. The lemma follows by taking expectation on both
sides over the internal randomness of Φ.
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Lemma 8. With the notations of Lemma 6, let S ⊆ {I1, . . . , Ik}, k̃ = |S|, Ȳdistinct :=
1
k̃

∑
j∈S Bj .

Then, conditioning on the indices I1, . . . , Ik (equivalently on S),

E

[∣∣∣∣∣ k̃m(Ȳdistinct − 1
2

)∣∣∣∣∣
∣∣∣∣∣ I1, . . . , Ik

]
≤

√
k̃

2m
.

Consequently,

E

[∣∣∣∣∣ k̃m(Ȳdistinct − 1
2

)∣∣∣∣∣
]
≤

E
[√

k̃
]

2m
≤

√
E
[
k̃
]

2m
=

1

2m

√
m

(
1−

(
1− 1

m

)k)
≤
√
k

2m
.

Proof. Condition on S (hence on k̃). Write Xj := Bj − 1
2 , so the {Xj}j∈S are independent, mean

0, and take values in {± 1
2}. Then

Ȳdistinct − 1
2 =

1

k̃

∑
j∈S

Xj ,

∣∣∣∣∣ k̃m(Ȳdistinct − 1
2

)∣∣∣∣∣ = 1

m

∣∣∣∣∣∣
∑
j∈S

Xj

∣∣∣∣∣∣ .
By the Khintchine’s inequality (upper bound in Lemma 5)

E

∣∣∣∣∣∣
∑
j∈S

Xj

∣∣∣∣∣∣
∣∣∣∣∣∣ S
 ≤

√√√√√√E


∑

j∈S

Xj

2
∣∣∣∣∣∣∣ S
 =

√∑
j∈S

E[X2
j ] =

1

2

√
k̃.

Dividing by m yields the conditional bound E
[∣∣∣ k̃m(Ȳdistinct − 1

2

)∣∣∣ ∣∣∣ S] ≤ √k̃
2m . The second bound

follows from the concavity of the square root: E[
√
k̃] ≤

√
E[k̃]. Finally, for sampling k times with

replacement from m bins, E[k̃] = m
(
1−

(
1− 1

m

)k)
, giving the stated closed form.

Proof of Theorem 4. We start by considering the simplified case whereH := {h0, h1} with h0(x) =
0 and h1(x) = 1 for some fixed x.

We partition the time horizon into T · S (small) blocks each of length 1
S . We will assign the same

label within each block, and assign the feature x for all time steps. Let

B1, · · · , Bm
i.i.d.∼ Bernoulli(

1

2
)

for some m to be determined. For each block t, we assign its label Yt in the following manner: we
first sample It ∼ Unif({1, · · · ,m}) independent of all other randomness and set Yt := BIt .

Let t1, · · · , tS be the blocks that are queried by any learning algorithm, possibly dependent on the
data. We may assume, w.l.o.g., that all the queries are in different blocks (since the same queries
within one block reveal no additional information as the labels are the same). Now, consider any
block t between ts and ts+1 that is not queried. By the law of total probability, we have:

E
[
|ĥs(x)− Yt|

]
= E

[
E
[
|ĥs(x)− Yt| | Yt1 , · · · , YtS

]]
≥ E

[
inf
Φ

E [|Φ(Yt1 , · · · , YtS )− Yt| | Yt1 , · · · , YtS ]
]

≥ E

[
1

2
− S̃

m

∣∣∣∣Ȳdistinct −
1

2

∣∣∣∣
]
, by Lemma 7

≥ 1

2
−
√
S

2m
, by Lemma 8
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where we have used the fact that the distribution of Yt conditioned on the queried observations
Yt1 , · · · , YtS is exactly the same as BJ in Lemma 6 for k = S. Since there are (T · S − S) blocks
that are not queried and each has size 1

S , the total risk is lower bounded by (for S ≤ m) 4:

1

S
· (T · S − S) ·

(
1

2
−
√
S

2m

)
≥ T

2
− T
√
S

2m
− 1

2
. (8)

We now analyze the comparator loss. Denote by Tj the total length of all blocks that are assigned
with variable Bj for j ∈ [m], where

∑m
j=1 Tj = T . Conditioned on any realization of Tj’s, the

comparator risk can be expressed as:

E

 min
b∈{0,1}


m∑
j=1

Tj · |b−Bj |


 .

Using a similar argument for proving (7), we conclude that:

E

 min
b∈{0,1}


m∑
j=1

Tj · |b−Bj |


 ≤ T

2
− T

2
√
2m

. (9)

Putting everything together and taking m := 5S, we arrive at the expected regret lower bound:

T

2
√
2m
− T
√
S

2m
− 1

2
≥ 0.123 · T√

S
− 1

2
≥ Ω

(
T√
S

)
.

The lower bound for the simplified case now follows by choosing the oblivious data process to be the
(deterministic) realization of the Yt’s that attains the expected regret lower bound above, which must
exist by the probabilistic method.

For general classH with Littlestone dimension d := Ldim(H), we construct the following oblivious
data process. We partition the time horizon T into d phases, each of length T/d. Let τ be a Littlestone
tree ofH of depth d (see [1, Lemma 14]), and let x1 be the root of τ . We assign the feature x1 during
the first phase and choose labels as in the simplified case above 5, for some value m to be determined.
Based on the realization of labels in phase one, we set the feature x2 for phase two to be the child of
x1 in τ whose outgoing edge label minimizes the comparator loss, and generate labels in the same
way using fresh randomness. We repeat this process for all d phases.

By the definition of Littlestone tree, there must exist some h ∈ H that attains the minimum comparator
loss in each of the d phases. Invoking (9), the total comparator loss is upper bounded by

d∑
r=1

(
T/d

2
+

T/d

2
√
2m

)
=

T

2
− T

2
√
2m

.

We now lower bound the risk of the learning algorithm. To avoid overly technical complications, we
assume that the learner assigns a fixed (but arbitrary) query budget Sr in phase r ∈ [d], although the
actual query times can be chosen completely arbitrarily 6. Note that in this case, the learner may
assign many queries in a single phase, so Sr may exceed m for some r. Fortunately, the upper bound
in Lemma 8 holds even if k ≥ m. Setting k := Sr for all r ∈ [d] and invoking a similar argument as
in (8), we obtain the following lower bound on the learner’s total risk:

d∑
r=1

T/d

2
− T

d

(√
Sr

2m
+

Sr

2m
√
m

)
−O

(
Sr

S

)
=

T

2
− T · S

2dm
√
m
− T

2dm

(
d∑

r=1

√
Sr

)
−O(1)

≥ T

2
− T · S

2dm
√
m
− T
√
dS

2dm
−O(1),

4For S ≥ T 2, one may choose the block length as 1
S2 to get rid of the 1

2
additive term.

5We still set the block length to 1
S

, where S is the total query budget.
6The fully adaptive queries can be handled via a high-probability version of Lemma 8 using Bernstein’s

inequality (with additional log factors). We omit the details, as they are technical and not central to this work.
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where we used the fact that
∑d

r=1 Sr ≤ S, and the final inequality follows from Cauchy–Schwarz.

Therefore, by setting m := 20S/d, the total expected regret is lower bounded by

T

2
√
2m
− T · S

2dm
√
m
− T
√
dS

2dm
−O(1) ≥ 0.048 · T√

S/d
−O(1) ≥ Ω

(
T ·
√
d√

S

)
.

This completes the proof of Theorem 4.

Remark 4. Note that a key technical innovation in our proof—compared to classical lower bound
constructions such as in [1]—is that the expected risk incurred by the learning algorithm is no longer
T/2. Instead, in our construction, the learner’s risk and that of the comparator are subtly linked
through the choice of m. The final regret bound leverages the crucial fact that, as m increases, the
learner’s risk grows faster than the comparator’s loss, enabling a non-trivial lower bound on regret
via appropriate tuning of m.

To illustrate the necessity of our technical argument in the proof of Theorem 4, we explain why a
naive approach—similar to the one used in [1]—fails to yield the optimal lower bound. Suppose we
partition the time horizon T into blocks of length ∆, and assign the label uniformly at random from
{0, 1} within each block. In this setting, the learner’s expected risk is not T/2. Instead, the learner
can query at the beginning of each block and repeat the observed label for the entire block, incurring
zero risk on any queried block. Therefore, the total expected risk becomes T−S·∆

2 . On the other
hand, a standard argument shows that the comparator loss (for the class {h0, h1}) is upper bounded
by T

2 −O(
√
∆ · T ). To obtain non-trivial regret, one must have

√
∆ · T ≥ S ·∆.

This implies ∆ ≤ T
S2 , and the resulting regret lower bound is Ω

(
T
S

)
, which is significantly weaker

than the optimal Ω
(

T√
S

)
regret.
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